Biomedical Engineering (BMEG)

Courses

BMEG 2614. Introduction to Biomedical Engineering. 4 Hours.
An introductory course for undergraduate biomedical engineering students. It covers topics such as recombinant DNA technologies, cell and tissue engineering, stem cell and organ regeneration, the biomechanics, bioinstrumentation, engineering of immunity, and bio- and medical imaging, etc. The application of nano-biotechnology in developing clinical products such as tissue engineered products, drug delivery systems, etc. will be emphasized in the course. Prerequisite: (GNEG 1321H, or GNEG 1121, or GNEG 1103), and CHEM 1103, with a grade of C or better, MATH 2554 and PHYS 2054.

BMEG 2813. Biomedical Engineering. 3 Hours.
This course introduces basic concepts and principles of biomechanics to biomedical and other engineering students. The course topics include mechanics and materials, viscoelastic properties, bone, cartilage, ligament, tendon, muscle, cardiovascular dynamics, clinical gait analysis, etc. After taking this course, students are expected to understand the application of engineering kinetics to describe motions of human body and mechanic properties of tissues. MATLAB will be used to write and solve biomechanical static and dynamic equations. Lecture 3 hours per week. Prerequisite: BMEG 2614, CHEM 1123, MATH 2564, and PHYS 2074.

BMEG 2904. Biomedical Instrumentation. 4 Hours.
This course is designed for biomedical engineering undergraduate students to learn both theoretical and practical concepts of bioinstrumentation and their applications in modern life science and medicine. Analytical experiments will be practiced in the laboratory along with the lecture section. This course covers basic topics in circuits such as charge current, voltage, resistance, power energy, linear network analysis, inductors, capacitors, operational amplifier, time-varying signals, active analog filters, bioinstrumentation design etc. The application of these principles and theories in bioinstrumentation design and development is particularly emphasized in this course. The lab section requires team work, planning, and data sharing. Corequisite: Lab component. Prerequisite: BMEG 2614, MATH 2564 and PHYS 2074.

BMEG 3124. Biomedical Signals and Systems. 4 Hours.
This course will introduce students to the basics of signals - continuous and digital signals, and signal processing tools, such as filters, Laplace and Fourier transforms. The ‘systems’ aspect of the course will focus on physiological systems and methods to model such systems. The course will also focus on the biomedical applications of these methods through lab components. Prerequisite: BMEG 2904.

BMEG 3634. Biomaterials. 4 Hours.
Introduction to the engineering properties of materials used in biomedical devices and applications. Topics include: atomic properties, structure-property-processing relationships, bulk engineering properties, surface and interfacial properties and applications of materials in biology and medicine. All topics will be reviewed in the context of specific biomedical devices and the engineering principles involved in their design. Corequisite: Lab component. Prerequisite: BMEG 2813, CHEM 1123, and BIOL 1543 and BIOL 1541L.

BMEG 3653. Biomedical Modeling and Numerical Methods. 3 Hours.
Application of mathematical techniques to physiological systems. The emphasis will be on cellular physiology and cardiovascular system. Cellular physiology topics include models of cellular metabolism, membrane dynamics, membrane potential, excitability, wave propagation and cellular function regulation. Cardiovascular system topics include models of blood cells, oxygen transport, cardiac output, cardiac regulation, and circulation. Pre- or Corequisite: MATH 2584. Prerequisite: BMEG 2614, and (MATH 2574 or MATH 3083).

BMEG 3653H. Honors Biomedical Modeling and Numerical Methods. 3 Hours.
Application of mathematical techniques to physiological systems. The emphasis will be on cellular physiology and cardiovascular system. Cellular physiology topics include models of cellular metabolism, membrane dynamics, membrane potential, excitability, wave propagation and cellular function regulation. Cardiovascular system topics include models of blood cells, oxygen transport, cardiac output, cardiac regulation, and circulation. Pre- or Corequisite: MATH 2584. Prerequisite: BMEG 2614, and (MATH 2574 or MATH 3083).

BMEG 3801. Clinical Observations and Needs Finding. 1 Hour.
This course involves the introduction of clinical procedures and biomedical devices and technology to biomedical engineering students. Students will tour medical facilities, clinics and hospitals and will participate in medical seminars, workshops and medical rounds. The course prepares students to successfully select and complete a project in the senior capstone course. Prerequisite: BMEG 2813 or BMEG 2904.

BMEG 3824. Biomolecular Engineering. 4 Hours.
Biomolecular Engineering is to design and produce biomolecules, especially proteins, for uses ranging from pharmaceuticals, materials, sensors, transducers, to functional interfaces with conventional engineering materials. The course begins with an introduction to the tools and techniques of molecular biology that are used for protein engineering. Additional topics include recombinant DNA techniques, biochemical kinetics, cell growth reaction and kinetics, bioreactors, membrane processes, and bioproduct purification. There is an associated laboratory with exercises related to lecture topics. Corequisite: Lab component. Prerequisite: BMEG 3634, CHEM 1123, and BIOL 2533.

BMEG 3824H. Honors Biomolecular Engineering. 4 Hours.
Biomolecular Engineering is to design and produce biomolecules, especially proteins, for uses ranging from pharmaceuticals, materials, sensors, transducers, to functional interfaces with conventional engineering materials. The course begins with an introduction to the tools and techniques of molecular biology that are used for protein engineering. Additional topics include recombinant DNA techniques, biochemical kinetics, cell growth reaction and kinetics, bioreactors, membrane processes, and bioproduct purification. There is an associated laboratory with exercises related to lecture topics. Corequisite: Lab component. Prerequisite: BMEG 3634, CHEM 1123, and BIOL 2533.

BMEG 4103L. Nanotechnology Laboratory. 3 Hours.
Provides students with hands-on experience in several major areas of nanotechnology, including nanoscale imaging, synthesis of nanomaterials, nanostructure assembly and manipulation, device and system integration, and performance evaluation. Students can earn credit for only one of the following courses: MEEG 4323L, BENG 4753L, BMEG 4103L, CHEM 4153L, PHYS 4793L. Corequisite: Drill component, junior standing and instructor consent. Prerequisite: MATH 2564, PHYS 2074, and CHEM 1123. This course is cross-listed with MEEG 4323L, CHEM 4153L, PHYS 4793L.

BMEG 4103M. Honors Nanotechnology Laboratory. 3 Hours.
Provides students with hands-on experience in several major areas of nanotechnology, including nanoscale imaging, synthesis of nanomaterials, nanostructure assembly and manipulation, device and system integration, and performance evaluation. Students can earn credit for only one of the following courses: MEEG 4323L, BENG 4753L, BMEG 4103L, CHEM 4153L, PHYS 4793L. Corequisite: Drill component, junior standing and instructor consent. Prerequisite: MATH 2564, PHYS 2074, CHEM 1123.

This course is equivalent to BMEG 3824.

BMEG 4103L. Nanotechnology Laboratory. 3 Hours.
Provides students with hands-on experience in several major areas of nanotechnology, including nanoscale imaging, synthesis of nanomaterials, nanostructure assembly and manipulation, device and system integration, and performance evaluation. Students can earn credit for only one of the following courses: MEEG 4323L, BENG 4753L, BMEG 4103L, CHEM 4153L, PHYS 4793L. Corequisite: Drill component, junior standing and instructor consent. Prerequisite: MATH 2564, PHYS 2074, CHEM 1123. This course is cross-listed with MEEG 4323L, CHEM 4153L, PHYS 4793L.
BMEG 4213. Tissue Mechanics. 3 Hours.
The purpose of this course is to introduce students to non-linear biomechanics of soft tissues such as skin, bladder, blood vessels, and the brain. Topics covered:
Tissue mechanics: continuum biomechanics, tensor analysis, kinematics of continua,
balance laws. Governing physics of mechanics as applied to soft tissues. Various
constitutive relations will be discussed: linear elastic, hyperelastic, viscoelastic,
poroelastic, and inelastic materials with internal variables. Cannot receive credit for
both BMEG 4213 and BMEG 5213. Prerequisite: BMEG 2813, BMEG major and
Senior standing.

BMEG 4243. Advanced Biomaterials and Biocompatibility. 3 Hours.
From Absorbable sutures to Zirconium alloy hip implants, biomaterials science
influences nearly every aspect of medicine. This course focuses on the study of
different classes of biomaterials and their interactions with human tissues. Topics
include: biocompatibility; biofouling; hemocompatibility; wound healing response;
foreign body response; design of orthopedic, dental and cardiovascular implants;
opthalmological and dermatological materials; degradable polymers for drug
delivery; nanobiomaterials; smart biomaterials and the regulation of devices and
materials by the FDA. Pre- or Corequisite: BMEG 4513. Prerequisite: BMEG 3634.

BMEG 4403. Biomedical Microscopy. 3 Hours.
An advanced course covering light microscopy techniques, conjugate image planes,
principles of contrast, fluorescence imaging, confocal and multi-photon microscopy,
electron microscopy, atomic force microscopy, image reconstruction and digital
image processing with supporting units in tissue culture and histology. Prerequisite:
BMEG 2904, PHYS 2074, BMEG major and Senior standing.

BMEG 4413. Tissue Engineering. 3 Hours.
This course introduces Tissue Engineering approaches at genetic and molecular,
cellular, tissue, and organ levels. Topics include cell and tissue in vitro expansion,
tissue organization, signaling molecules, stem cell and stem cell differentiation,
organ regeneration, biomaterial and matrix for tissue engineering, bioreactor design
for cell and tissue culture, dynamic and transportation in cell and tissue cultures,
clinical implementation of tissue engineered products, and tissue-engineered
devices. Corequisite: Lab component. Prerequisite: BMEG 3824 and BIOL 2533.

BMEG 450VH. Honors Thesis. 1-4 Hour.
Provides Biomedical Engineering students an opportunity to explore a topic in
depth through an independent research or design project. Prerequisite: Honors
standing. May be repeated for degree credit.

BMEG 4513. Biomedical Optics and Imaging. 3 Hours.
This course will provide students with a fundamental understanding of various
biomedical imaging modalities. Topics will include: Basics of light-tissue interaction
- absorption, fluorescence, elastic and inelastic scattering; Computational and
analytical models of light propagation to quantify tissue optical properties; Optical
imaging techniques spectroscopy, tomography, and laser speckle with potential
clinical applications; and Clinical imaging modalities and recent advances X-
ray, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET),
Computed Tomography (CT), Ultrasound imaging, and Photoacoustic imaging.
At the end of this course, students should have a good understanding of optical
imaging, spectroscopy, and non-optical imaging modalities, specific anatomical
sites that they are best suited for, and the trade-offs between imaging depth and
resolution. Students may not receive credit for both BMEG 4513 and BMEG 5513.
Prerequisite: BMEG 2904 and senior standing.

BMEG 4523. Biomedical Data and Image Analysis. 3 Hours.
This course focuses on an introduction to image processing and analysis for
applications in biomedical research. After a review of basic MATLAB usage,
students will learn fundamental tools for processing and analyzing data from a
variety of subdisciplines within biomedical engineering. Topics include: filtering,
thresholding, segmentation, morphological processing, and image registration.
Through exercises involving 1D, 2D, and 3D data, students will develop problem-
solving skills and a knowledge base in MATLAB required for customized
quantitative data analysis. Students may not receive credit for both BMEG 4523 and
BMEG 5523. Prerequisite: BMEG 3124 and BMEG 3653.

BMEG 460V. Individual Study. 1-3 Hour.
Individual study and research of a topic mutually agreeable to the student and faculty
member. May be repeated for degree credit.

BMEG 460VH. Honors Individual Study. 1-3 Hour.
Individual study and research of a topic mutually agreeable to the student and faculty
member. May be repeated for degree credit. This course is equivalent to BMEG 460V.

BMEG 4623. Biomedical Transport Phenomena. 3 Hours.
An introduction to the modeling of complex biological systems using principles of
transport phenomena and biochemical kinetics. This course will cover molecular
transport due to velocity, concentration and thermal gradients. Topics include the
conservation relations; rheology of Newtonian and non-Newtonian physiological
fluids; regulation of blood flow; steady and transient diffusion in reacting systems;
dimensional analysis; transport processes in disease pathology. Prerequisite:
BMEG 3653, CHEG 2133 or MEEG 3503, CHEG 2313 or MEEG 2403, MATH 2574
and MATH 2584.

BMEG 4623H. Honors Biomedical Transport Phenomena. 3 Hours.
An introduction to the modeling of complex biological systems using principles of
transport phenomena and biochemical kinetics. This course will cover molecular
transport due to velocity, concentration and thermal gradients. Topics include the
conservation relations; rheology of Newtonian and non-Newtonian physiological
fluids; regulation of blood flow; steady and transient diffusion in reacting systems;
dimensional analysis; transport processes in disease pathology. Prerequisite:
BMEG 3653, CHEG 2133 or MEEG 3503, CHEG 2313 or MEEG 2403, MATH 2574
and MATH 2584.

This course is equivalent to BMEG 4623.

BMEG 470V. Special Topics in Biomedical Engineering. 1-4 Hour.
Consideration of current biomedical engineering topics not covered in other courses.
Prerequisite: Senior standing. May be repeated for degree credit.

BMEG 4713. Cardiovascular Physiology and Devices. 3 Hours.
Understanding etymology of disease while creating solutions and dedicated
devices is the primary focus of biomedical engineering. This course describes an
interdisciplinary approach of the clinical and engineering worlds to develop devices
for treating cardiovascular disease. The first part of the course will be a thorough
review of the relevant anatomic and physiological considerations important for
developing devices. Understanding these considerations from an engineering
perspective to inform device development will be the second part of the course.
Students may not receive credit for both BMEG 4713 and BMEG 5713. Prerequisite:
CHEG 2133 or MEEG 3503, and BIOL 2213.

BMEG 4743. Drug and Gene Delivery. 3 Hours.
An advanced course covering important issues in drug and gene delivery in tumor
and normal tissues. The course emphasizes quantitative analysis of molecule and
nanoparticle transport through mathematical modeling and computer simulation.
Various engineering-related topics on drug and gene delivery are discussed. These
topics include physiologically-based pharmacokinetic analysis, transvascular
transport, interstitial transport, transport across cell membrane, drug and gene
carriers, targeted delivery of drugs, oxygen transport, delivery of effector cells and
genes. Pre- or Corequisite: BMEG 4623.
BMEG 4813. Biomedical Engineering Design I. 3 Hours.
This is part one of a two-semester course that introduces students to the basic concepts of design from a biomedical engineering perspective. Groups are organized into teams of 4-5 members. The students put together a development plan and complete an initial prototype. Students will design what is to be fabricated and tested as a medical device or software following design process and product design specification guidelines. Corequisite: Lab component. Pre- or Corequisite: BMEG 4623.

BMEG 4823. Biomedical Engineering Design II. 3 Hours.
This is part two of a two-semester course that introduces students to the basic concepts of design from a biomedical engineering perspective. Groups are organized into teams of 4-5 members. The students put together a development plan and complete an initial prototype. Students will design what is to be fabricated and tested as a medical device or software following design process and product design specification guidelines. Corequisite: Lab component. Prerequisite: BMEG 4813.

BMEG 4873. Bionanotechnology. 3 Hours.
This is an introductory course relevant to bionanotechnology. The topics covered in this course include nanobiomaterials, nanoparticles, nanowires, nanobiochips, nanobiosensors, and nanobiodevices. The applications of these nanomaterials and devices in clinical diagnostics, disease treatment, point-of-care test and/or point-of-care diagnostics, tele-medical cares, controlled and targeted drug delivery, etc. will be particularly emphasized in the lecture. Prerequisite: BMEG 2813, BMEG 3824, and CHEG 2133 or MEEG 3503.

BMEG 4973. Regenerative Medicine. 3 Hours.
This is an advanced course focusing on tissue engineering and regenerative medicine. Topics include stem cell tissue engineering, cell signaling, transport and kinetics, biomaterials and scaffolds, surface interactions, viral and nonviral-based gene delivery, tissue engineered organs, organ transplantation, nanomedicine, cell replacement therapy, and organ regenerative therapy. Technologies used to grow clinical relevant cells and tissues in lab will also be discussed in this course. Pre- or Corequisite: Senior standing.

BMEG 5103. Design and Analysis of Experiments in Biomedical Research. 3 Hours.
An advanced course covering sample size estimation with power calculations, protection of vertebrate animals and human subjects, factorial design, multivariate analysis of variance, parametric and non-parametrics data analysis, Kaplan-meier analysis, and post-test correction of multiple comparisons as related to biomedical data. Prerequisite: MATH 2584 and BMEG 3653 or equivalents.

BMEG 5203. Mathematical Modeling of Physiological Systems. 3 Hours.
Application of numerical methods and mathematical techniques to physiological systems. Cellular physiology topics include models of cellular metabolism, diffusion, membrane potential, excitability, calcium dynamics and intercellular signalling. Cardiovascular system topics include models of blood cells, oxygen transport, cardiac output, cardiac regulation, and circulation. Other physiology topics include respiration, muscle, vision, hearing, voice, and speech. Prerequisite: MATH 2584 or BMEG 3653 or BMEG 4623 or equivalents.

BMEG 5213. Tissue Mechanics. 3 Hours.
The purpose of this course is to introduce students to non-linear biomechanics of soft tissues such as skin, bladder, blood vessels, and the brain. Topics covered: Tissue mechanics: continuum biomechanics, tensor analysis, kinematics of continua, balance laws. Governing physics of mechanics as applied to soft tissues. Various constitutive relations will be discussed: linear elastic, hyperelastic, viscoelastic, poroelastic, and inelastic materials with internal variables. Cannot receive credit for both BMEG 4213 and BMEG 5213. Prerequisite: BMEG 2813 and BMEG 4623 or equivalents.

BMEG 5313. Advanced Biomaterials and Biocompatibility. 3 Hours.
From Absorbable sutures to Zirconium alloy hip implants, biomaterials science influences nearly every aspect of medicine. This course focuses on the study of different classes of biomaterials and their interactions with human tissues. Prerequisite: BMEG 3634 and BMEG 4623 or equivalents.

BMEG 5413. Tissue Engineering. 3 Hours.
This course introduces Tissue Engineering approaches at genetic and molecular, cellular, tissue, and organ levels. Topics include cell and tissue in-vitro expansion, tissue organization, signaling molecules, stem cell and stem cell differentiation, organ regeneration, biomaterial and matrix for tissue engineering, bioreactor design for cell and tissue culture, dynamic and transportation in cell and tissue cultures, clinical implementation of tissue engineered products, and tissue-engineered devices. Students may not earn credit for both BMEG 5413 and BMEG 4413. Corequisite: Lab component. Prerequisite: BIOL 2533 and BMEG 3824.

BMEG 5423. Regenerative Medicine. 3 Hours.
The course covers five broad areas: Biological and molecular basis for regenerative medicine, tissue development, regenerative medicine and innovative technologies, clinical applications of regenerative medicine, and regulation and ethics. Prerequisite: BIOL 2533 and BMEG 3824 or equivalents.

BMEG 5513. Biomedical Optics and Imaging. 3 Hours.
This course will provide students with a fundamental understanding of various biomedical imaging modalities. Topics will include: Basics of light-tissue interaction - absorption, fluorescence, elastic and inelastic scattering; Computational and analytical models of light propagation to quantify tissue optical properties; Optical imaging techniques - spectroscopy, tomography, and laser speckle with potential clinical applications; and Clinical imaging modalities and recent advances - X-ray, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Computed Tomography (CT), Ultrasound imaging, and Photoacoustic imaging. At the end of this course, students should have a good understanding of optical imaging, spectroscopy, and non-optical imaging modalities, specific anatomical sites that they are best suited for, and the trade-offs between imaging depth and resolution. Students may not receive credit for both BMEG 4513 and BMEG 5513.

BMEG 5523. Biomedical Data and Image Analysis. 3 Hours.
This course focuses on an introduction to image processing and analysis for applications in biomedical research. After a review of basic MATLAB usage, students will learn fundamental tools for processing and analyzing data from a variety of subdisciplines within biomedical engineering. Topics include: filtering, thresholding, segmentation, morphological processing, and image registration. Through exercises involving 1D, 2D, and 3D data, students will develop problem-solving skills and a knowledge base in MATLAB required for customized quantitative data analysis. Students may not receive credit for both BMEG 4523 and BMEG 5523. Prerequisite: Graduate standing.

BMEG 560V. Advanced Individual Study. 1-6 Hour.
Individual study and research of a topic mutually agreeable to the student and faculty member. Prerequisite: Graduate standing.

BMEG 570V. Advanced Special Topics. 1-6 Hour.
Consideration of current biomedical engineering topics not covered in other courses. Prerequisite: Graduate standing. May be repeated for up to 15 hours of degree credit.

BMEG 5713. Cardiovascular Physiology and Devices. 3 Hours.
Understanding etymology of disease while creating solutions and dedicated devices is the primary focus of biomedical engineering. This course describes an interdisciplinary approach of the clinical and engineering worlds to develop devices for treating cardiovascular disease. The first part of the course will be a thorough review of the relevant anatomic and physiological considerations important for developing devices. Understanding these considerations from an engineering perspective to inform device development will be the second part of the course. Students may not receive credit for both BMEG 4713 and BMEG 5713. Prerequisite: Graduate standing.
BMEG 5800. Graduate Seminar I. 0 Hours.
A weekly seminar series comprised of presentations by invited speakers and graduate students as well as didactic instruction in relevant topics including research ethics, authorship, biosafety and the use of animals in biomedical research. Prerequisite: BMEG 5801. May be repeated for up to 0 hours of degree credit.

BMEG 5801. Graduate Seminar I. 1 Hour.
A weekly seminar series comprised of presentations by invited speakers and graduate students as well as didactic instruction in relevant topics including research ethics, authorship, biosafety and the use of animals in biomedical research.

BMEG 5810. Graduate Seminar II. 0 Hours.
A weekly seminar series comprised of presentations by invited speakers and graduate students as well as didactic instruction in relevant topics including professional development, career options, effective communication, technology transfer, clinical translation and intellectual property. Prerequisite: BMEG 5811. May be repeated for up to 0 hours of degree credit.

BMEG 5811. Graduate Seminar II. 1 Hour.
A weekly seminar series comprised of presentations by invited speakers and graduate students as well as didactic instruction in relevant topics including professional development, career options, effective communication, technology transfer, clinical translation and intellectual property.

BMEG 5953. Fundamentals of Fracture and Fatigue in Structures. 3 Hours.
The course will cover the concepts of linear-elastic, elastic-plastic and time-dependent Fracture Mechanics as applied to fracture in a variety of materials, structures, and operating conditions. The examples will include fracture in large components such as aircraft, bridges and pressure vessels and also in bones and in soft materials and human tissue. Prerequisite: Graduate standing in Civil, Mechanical or Biomedical Engineering or consent of the instructor. This course is cross-listed with MEEG 5953, CVEG 5953.

BMEG 600V. Master’s Thesis. 1-6 Hour.
Master’s Thesis. Prerequisite: Graduate standing. May be repeated for degree credit.

BMEG 700V. Doctoral Dissertation. 1-6 Hour.
Doctoral Dissertation. Prerequisite: Graduate standing. May be repeated for degree credit.