Statistics (STAT)

Giovanni Petris
Director of Statistics Program
314 Science-Engineering Building

Requirements for a Minor in Statistics:

Coursework used toward the mathematics major may not be applied toward a statistics minor.

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2554</td>
<td>Calculus I (ACTS Equivalency = MATH 2405)</td>
<td>4</td>
</tr>
<tr>
<td>12 hours of STAT courses, including 9 hours in courses numbered 3000 and above</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total Hours</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Courses

STAT 2023. Biostatistics. 3 Hours.
An introductory course in biostatistics emphasizing methods for collecting, graphing, and understanding data. Special emphasis is placed upon available methods for both exploratory and confirmatory data analysis. Particular attention is given to statistical methods for data sets with discrete variables. Pre- or Corequisite: MATH 2554. Corequisite: Lab component.

STAT 2303. Principles of Statistics (ACTS Equivalency = MATH 2103). 3 Hours.
A problem-oriented course with applications from many fields. Emphasis on understanding the nature of statistical orderliness implied by probability laws. Statistical analysis is treated as a means of decision making in the face of uncertainty. Prerequisite: MATH 1203 or MATH 1204 each with a grade of C or better, or MATH 1313 with a grade of C or better, or a score of at least 80% on the University of Arkansas Mastery of Algebra Exam, or a score of at least 26 on the math component of the ACT exam, or a score of at least 600 on the math component of the old SAT or 620 on the math component of the new SAT.

STAT 3013. Introduction to Probability. 3 Hours.
A calculus-based introduction to probability. Discrete probability spaces and counting techniques, discrete and continuous probability distributions, random variables, random samples, law of large numbers, central limit theorem. Prerequisite: MATH 2564.
This course is cross-listed with MATH 3013.

STAT 3113. Introduction to Mathematical Statistics. 3 Hours.
A calculus-based introduction to mathematical statistics, revolving around estimation, hypothesis testing, and Bayesian inference. Emphasis is given to the unifying mathematical and decision-theoretical principles that provide a justification to different estimation and testing procedures. Prerequisite: STAT 3013 or departmental consent.

STAT 4003. Statistical Methods Laboratory. 1 Hour.
Introduction to the statistical software SAS, including its use for common statistical analyses. A practical complement to the statistical methodology covered in STAT 4003.

STAT 4003. Statistical Methods. 3 Hours.
Describing Data, Basic Probability, Random variables, Uniform, Normal and Binomial Distributions, Sampling Distributions, Confidence Intervals, Hypothesis testing, Correlation and Regression, Contingency table, Comparing two populations, ANOVA. Prerequisite: MATH 2554 or MATH 2554C.

STAT 4033. Nonparametric Statistical Methods. 3 Hours.
Chi square tests. Kolmogorov-Smirnov goodness-of-fit tests, the Mann-Whitney and Wilcoxon 2-sampling tests, and various nonparametric measures of association. Prerequisite: STAT 2303 or STAT 2023 or departmental consent.

STAT 4043. Sampling Techniques. 3 Hours.
Considers optimum techniques of simple random, stratified random, cluster, systematic and multistage sampling from finite populations subject to cost precision constraints. Wide range of applications. Prerequisite: STAT 4003.

STAT 405V. Internship in Professional Practice. 1-3 Hour.
Professional work experience involving significant use of mathematics or statistics in business, industry or government. Prerequisite: Departmental consent. May be repeated for up to 3 hours of degree credit.

STAT 4101L. Introduction to R. 1 Hour.
A hands-on introduction to R software, a free and open-source computing environment used for data manipulation and analysis across a broad spectrum of subject areas. Intended for new users. Content begins with simple data manipulation, then complex data structures and common statistical procedures are covered.

STAT 4333. Analysis of Categorical Responses. 3 Hours.
Statistical tools to analyze univariate and multivariate categorical responses. Emphasis is given to Generalized Linear Models, including logistic regression and loglinear models. Prerequisite: STAT 4003 or departmental consent.

STAT 4373. Experimental Design. 3 Hours.
Topics in the design and analysis of planned experiments, including randomized block, Latin square, split plot, and BIB designs, use of fractional factorial replication, and repeated measures. Prerequisite: STAT 4003.