Microelectronics–Photonics (MEPH)

Rick Wise
Program Director
103 Nanoscale Material Science and Engineering Building
479-575-2875
Email: microEP@uark.edu (microEP@cavern.uark.edu)

Microelectronics-Photonics Program Website (http://microEP.uark.edu)

Degrees Conferred:
M.S., Ph.D. in Microelectronics-Photonics (MEPH)

Program Description: This multidisciplinary program prepares students for careers in the development and manufacturing of micro- to nanoscale materials, processing, and devices in such industries as biosensing, photonics, telecommunications, microelectronics, and MEMs. Typical students in this program will be full-time students residing on campus, but provisions may be made to support remotely located part-time students already engaged in professional careers.

Philosophy of Graduate Education: All entering graduate students from June 1 through May 31 of the following year are formed into a cohort. Cohort members form a natural work group during their first 24 months of graduate school, and the cohort members receive training in how to effectively apply their academic knowledge in professional group environments such as research- or teaching-based academic departments, large governmental research labs, or industrial settings. The cohort training also fosters a supportive graduate community atmosphere that enhances the likelihood of academic success of all the program’s graduate students. The techniques used for this training have been developed at the University of Arkansas under the financial sponsorship of the NSF Integrative Graduate Education and Research Training program, and the Department of Education’s Fund for Improvement of the NSF Integrative Graduate Education and Research Training program. Through these methods, our graduate students exit our degree programs with the equivalent of one and a half years of on-the-job training in management techniques useful in a technology-based professional career setting.

M.S. in Microelectronics-Photonics

Prerequisites to Degree Program: Applicants to the program must satisfy the requirements of the Graduate School as described in this catalog and have the approval of the Graduate Studies Committee of the Microelectronics-Photonics program (GSCMEP).

Candidates typically have completed a Bachelor of Science degree in either engineering or science, and candidates’ academic backgrounds will be evaluated by the GSCMEP for suitability to the graduate program. To be admitted to graduate study in Microelectronics-Photonics (microEP) without deficiency, candidates are required to have completed a math course sequence through differential equations, an introduction to quantum mechanics through courses such as PHYS 3603, PHYS 3614, or CHEM 3504, and an introduction to electricity and magnetism or electronic circuits. Other undergraduate deficiencies may be identified during the evaluation process, and degree completion will be contingent on successful completion of these identified deficiencies.

Prospective students from foreign countries in which English is not the native language must submit nationally recognized standardized testing results on written English proficiency for consideration by the Graduate School during the admission process. Students may be given conditional admittance pending demonstration of English language skills in appropriate courses at the University of Arkansas. Students wishing to apply for graduate assistantships that require direct contact with students in a teaching or tutorial role must meet the Graduate School’s English Language proficiency test requirements for such GA positions.

Requirements for the Master of Science Degree: Students choosing this degree program will be assigned an initial adviser upon acceptance to the program. This adviser will be their Cohort Manager during that academic year. Students will work with the Director of the Microelectronics-Photonics program to define their M.S. path to best support their career goals after graduation, with three curricula paths available to Microelectronics-Photonics students:

• Non-thesis path: Students who are funded by personal resources or by graduate assistantships not associated with research or educational grants may complete an M.S. degree with additional course work in place of independent research. While there may be specific narrow career options where this is an appropriate path, the Microelectronics-Photonics program strongly recommends the Professional or Academic paths as providing a much better overall career preparation for working in a technical position. Students completing this path cannot be accepted for the Ph.D. Microelectronics-Photonics program.

• Professional path: Students who plan to enter the technical marketplace after M.S. completion will find this path most beneficial as it requires independent graduate-level research in collaboration with an external technical organization. The research may be in the form of a traditional M.S. six-hour research topic and thesis, or may instead be in the form of two three-hour independent research efforts resulting in written reports with the clarity, style, analysis, and conclusions expected of a journal paper submission. Both the thesis and the written reports will be orally defended before the appropriate student committee. Students in this path will also be required to complete at least one internship of at least six weeks duration to experience a non-academic technical environment. Students completing this path may be considered by the GSCMEP for admission to the Ph.D. Microelectronics-Photonics program based on the strength of their academic course grades, their independent research depth, and the quality of the written research document.

• Academic path: Students who plan to complete an academic campus-based research thesis will take this path, although the research topic may include funding and collaboration with outside technical organizations. Students who complete all requirements for M.S. graduation, including an independent research project and thesis acceptable to their thesis committee, will be eligible without GSCMEP review for admission to the Ph.D. Microelectronics-Photonics program.

Students will form either a theses committee or an advisory committee after they have chosen their M.S. path, defined any independent research areas, and been accepted into a research group if appropriate. A thesis committee will be made up of at least three faculty members, with at least one faculty member each from the Fulbright College of Arts and Sciences and the College of Engineering (the student’s research professor will chair the thesis committee). The advisory committee will include at least one GSCMEP member, the supervising faculty member for a research experience, and the student’s cohort leader. If the student is in the Professional path, then either committee must also include at least one
Students in this degree program can choose an Academic path, a Professional path, or a Non-thesis path. The course hours to meet the minimum requirements for each path are as follows:

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>Academic Path/Non-Thesis Path</th>
<th>Professional Path/Non-Thesis Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEPH 5393 Product Development Process</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>MEPH 5821 Ethics</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>MEPH 5832 Proposal Writing and Management</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>MEPH 5811/5911/6831/6911 Oper Seminar</td>
<td>>=3</td>
<td>>=3</td>
</tr>
<tr>
<td>MEPH 5811 1st Year Operations Seminar</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>MEPH 5812 Ethics 2nd Year Operations Seminar</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
<tr>
<td>MEPH 5813 Applied External Research</td>
<td>Not Available</td>
<td>(Or Option) 3 + 3</td>
</tr>
<tr>
<td>MEPH 5823 Applied Internal Research</td>
<td>Not Available</td>
<td>(Or Option) 3 + 3</td>
</tr>
<tr>
<td>MEPH 5854 Applied Independent Project</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>MEPH 5554 External Technical Internship</td>
<td>Recommended in 1 <=V <=3</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

If a University of Arkansas undergraduate student is pursuing a Bachelor of Science degree in a department that has implemented an accelerated B.S./M.S. program (typically allowing six hours of graduate-level course work to be shared between the two degrees), the student may implement the same acceleration for a B.S. departmental degree/ M.S. Microelectronics-Photonics degree set. Both the undergraduate department and the Microelectronics-Photonics program Director must approve the shared courses prior to enrollment.

Each student's curriculum must also address a need for a focus field. Each student completing a Microelectronics-Photonics degree must define a curriculum containing the following core requirements in the focus field to cover five aspects of micro- to nanoscale materials and devices. In the Applications aspect, every student must complete ELEG 5203 Semiconductor Devices. In the Materials aspect, students must take at least one course emphasizing the nature of the materials applied in their chosen focus field. In the Fabrication aspect, students must take at least one course emphasizing the theory of micro- or nanoscale fabrication in their focus field. In the Fabrication Practice aspect, all students are highly encouraged to complete at least one course containing hands-on laboratory fabrication experience. In the Management of Technology aspect, every student must complete MEPH 5383 Research Commercialization and Product Development.

The Graduate Handbook of the Microelectronics-Photonics Graduate Program will contain a current list of approved courses in each of these areas that will allow students to optimize their curriculum within their focus field. Students may choose a course not listed in the handbook to fill an aspect's required course with the permission of their thesis committee and the Microelectronics-Photonics Director. Students who have acquired the knowledge contained in these courses through prior education may petition the Microelectronics-Photonics program Director for permission to substitute other classes for these core courses.

Additional core courses to develop operations management skills also have been defined for Microelectronics-Photonics students. During year one of their graduate studies at the University of Arkansas, students are required to take MEPH 5811 1st Year Operations Seminar - Infrastructure Management and MEPH 5911 1st Year Operations Seminar - Personnel Management in the fall and spring semesters and MEPH 5821 Ethics for Scientists and Engineers in their first summer. During year two, students are required to take MEPH 6811 and MEPH 6911 Operations Management Seminars in both fall and spring semesters and MEPH 5832 Proposal Writing and Management in their second summer. Students who begin their graduate studies at the University of Arkansas during the spring semester will be required to take MEPH 5811 in the fall semester following their completion of MEPH 6911 or to take MEPH 5811 concurrently with MEPH 6811. In addition, all cohort members participate in two days of industrial-style inventiveness and team training during the week directly preceding the start of fall classes. Three to five of these seven credit hours may be used in M.S. curricula, shown in the table, and the remaining credit hours may be applied as Ph.D.-level technical electives.

Students are required to attend monthly Microelectronics-Photonics Research Communication Seminars during the first three semesters of their M.S. degree program, and will enroll in MEPH 5611 Research Communication Seminar of MS Students in their third semester. Students working more than 20 hours per week in a technology-based professional position approved by the Microelectronics-Photonics Director will not be required to be enrolled in this class or attend the monthly seminars as a condition for graduation.

Research thesis hours will be chosen from the department of the student's research adviser (e.g., PHYS 600V, ELEG 600V, etc.) and will require a written thesis successfully defended in a comprehensive oral exam given by the thesis committee.

A research thesis is required for Academic path students, and is optional for Professional path students. Professional path thesis research must include direct collaboration with an external technical organization.
A student in the Professional path may substitute two Applied Research efforts for a thesis under MEPH 5513 (External location) or MEPH 5523 (Internal on-campus location), provided each semester’s research is of graduate-level quality and is reported at the end of the semester through a written paper and in an oral presentation to the advisory committee (note that the written paper must match the clarity, style, analysis, and conclusions expected of a journal paper submission). Regardless of where the research is performed, it must include direct collaboration with an external technical organization.

Independent project hours in support of the Non-thesis path may be either MEPH 588V Special Problems in Microelectronics-Photonics or a departmental Special Problems course number, and will require a written project report modeled after a professional journal submission that is then defended in a comprehensive oral exam given by the advisory committee.

If a student is taking either a special problems independent study course (such as MEPH 588V) or a special topics course (such as MEPH 587V) to meet partial requirements for their M.S. degree, then the instructor must supply the Microelectronics-Photonics program office with a syllabus of that class to be included in their program records. They syllabus must include at least the course title, semester, instructor name, a list of specific course objectives, sources of content knowledge, and method by which the student’s mastery of the learning objectives is demonstrated.

Each student is required to enroll in at least one hour of course work each fall and spring semester until the M.S. degree is issued. If all required course work has been completed, the student may enroll in one hour of master’s thesis, or in one hour of a special problems course for credit only.

Students should also be aware of Graduate School requirements with regard to master’s degrees (http://catalog.uark.edu/graduatecatalog/ degreerequirements/#mastersdegreestext).

Ph.D. in Microelectronics-Photonics

Requirements for the Doctor of Philosophy Degree: Students choosing this degree program will be assigned an initial adviser upon acceptance to the program. This adviser will be their Cohort manager during that academic year. Students will work with the Director of the Microelectronics-Photonics program to define their dissertation committee after they are accepted by a research faculty for a research project. This committee will be made up of at least four faculty members, with at least one faculty member each from the Fulbright College of Arts and Sciences and the College of Engineering. The student’s research professor will chair the dissertation committee.

Candidates for the Ph.D. program are expected to have completed a Master of Science degree in either engineering or science, with each candidate’s academic background being evaluated by the GSCMEP. Doctoral candidates in Microelectronics-Photonics are expected to have proficiency in the core curriculum of the Master of Science in Microelectronics-Photonics at the University of Arkansas. This core is described in detail above and in the handbook of the Microelectronics-Photonics program and is the knowledge that will be tested in the Microelectronics-Photonics specific candidacy exam administered in the spring semester of each academic year.

Students who have graduated with a Master of Science degree in Microelectronics-Photonics from the University of Arkansas will be expected to take the Microelectronics-Photonics written Ph.D. candidacy exam in the spring semester after M.S. graduation. Students requesting admission to the Ph.D. program with a Master of Science degree in another discipline will be required to take the Microelectronics-Photonics written Ph.D. candidacy exam within four semesters after M.S. graduation, but not before completing MEPH 5911 1st Year Operations Seminar - Personnel Management and MEPH 5383 Research Commercialization and Product Development.

A second part of the candidacy exam, a detailed Ph.D. research proposal, must be accepted by the student’s committee before the end of the 24th month after the start date of the student’s first semester as a Ph.D. student, or the student will be removed from the Ph.D. program. This research proposal is not linked to the written candidacy exam and may be presented to the committee any time in this 24 month period.

Students who fail to pass their written candidacy exam will have a joint consultation with their major professor and their Cohort Manager to formulate a specific action plan to correct student deficiencies identified by the exam. The student will be allowed to retake the written exam only one additional time, which must be during the next scheduled written examination period.

A Ph.D. curriculum will be defined to meet each student’s research interests as well as the Microelectronics-Photonics program’s interest in course breadth. It is to be expected that certain Master of Science degrees will be poorer matches to the Microelectronics-Photonics program focus areas and will therefore require a greater number of graduate courses in the Ph.D. curriculum as a requirement for graduation.

The course plan for each student must include a minimum of 27 hours of graduate coursework beyond the Master of Science degree requirements. Specific courses will be chosen by the student and must be approved by the student’s doctoral advisory committee. The coursework list for the Ph.D. degree will then be combined with the courses completed during the student’s Master of Science studies to assure that the combined course list includes:

1. at least 27 hours of 5000- and 6000-level courses in science and engineering,
2. at least six hours of courses relevant to the management of technology,
3. no more than six hours of special problems and no more than nine hours of special topics courses,
4. and no more than four hours of:
 - MEPH 5511 1st Year Operations Seminar - Infrastructure Management
 - MEPH 5512 2nd Year Operations Seminar - Management and Leadership
 - MEPH 5821 Ethics for Scientists and Engineers
 - MEPH 5832 Proposal Writing and Management

If a student is taking either a special problems independent study course (such as MEPH 588V) or a special topics course (such as MEPH 587V) to meet partial requirements for their Ph.D. degree, then the instructor must supply the Microelectronics-Photonics program office with a syllabus of that class to be included in their program records. The syllabus must include at least the course title, semester, instructor name, a list of specific course objectives, sources of content knowledge, and method by which the student’s mastery of the learning objectives is demonstrated.

Students are required to attend monthly Microelectronics-Photonics Research Communication Seminars during the first five semesters of
their Ph.D. degree program, and will enroll in MEPH 6611 Research Communication Seminar of PhD Students in their fifth semester. Students working more than 20 hours per week in a technology-based professional position approved by the Microelectronics-Photonics Director will not be required to be enrolled in this class or attend the monthly seminars as a condition for graduation.

In addition to these conditions, the 21 hours of research dissertation will be taken under departmental course numbers such as PHYS 700V, CHEG 700V, CHEM 700V, ELEG 700V, etc. as appropriate to match to the department of each student’s major research professor. The dissertation format must meet all Graduate School published guidelines and the Microelectronics-Photonics guidelines as listed in the Microelectronics-Photonics Graduate Student Handbook. A Ph.D. candidate wishing to use a compilation of published papers for the dissertation must receive explicit permission from the GSCMEP to use this style dissertation at least six months prior to his or her dissertation defense, with a meeting between the student’s committee chair and the GSCMEP required before permission can be granted.

Students should also be aware of Graduate School requirements with regard to doctoral degrees (http://catalog.uark.edu/graduatecatalog/degreerequirements/#phdandediodegreeext).

Graduate Faculty

Ang, Simon S., Ph.D. (Southern Methodist University), M.S.E.E. (Georgia Institute of Technology), B.S.E.E. (University of Arkansas), Professor, Department of Electrical Engineering, 1988.

Balda, Juan Carlos, Ph.D. (University of Natal), B.S. (Universidad Nacional del Sur), University Professor, Department of Electrical Engineering, 1989.

Barraza-Lopez, Salvador, Ph.D. (University of Illinois-Urbana-Champaign), B.S. (Instituto Politecnico Nacional de Mexico), Associate Professor, Department of Physics, 2011.

Bellaiche, Laurent, Ph.D., M.S., B.S. (University of Paris VI, France), Distinguished Professor, Department of Physics, 1999.

Benamara, Mourad, Ph.D., M.S., (University of Toulouse III, France), Assistant Professor, Nanotechnology, 2007.

Beyzavi, M. Hassan, Ph.D. (Freie Universitat Berlin, Germany), Assistant Professor, Department of Chemistry and Biochemistry, 2017.

Chen, Zhong, Ph.D. (North Carolina State University), M.Eng. (National University of Singapore), B.S. (Zhejiang University), Assistant Professor, Department of Electrical Engineering, 2015.

Churchill, Hugh O.H., Ph.D., A.M. (Harvard University), B.A. (Oberlin College), B.M. (Oberlin Conservatory of Music), Assistant Professor, Department of Physics, 2015.

Coridan, Robert, Ph.D., M.S., (University of Illinois-Urbana-Champaign), B.S. (The Ohio State University), Assistant Professor, Department of Chemistry and Biochemistry, 2015.

Di, Jia, Ph.D. (University of Central Florida), M.S., B.S. (Tsinghua University), Professor, Department of Computer Science and Computer Engineering, 2004.

El-Shenawee, Magda O., Ph.D. (University of Nebraska-Lincoln), M.S., B.S. (Assiut University, Egypt), Professor, Department of Electrical Engineering, 2001.

Fu, Huaxiang, Ph.D., M.S. (Fudan University), B.S. (University of Science and Technology of China), Professor, Department of Physics, 2002.

Harter, William G., Ph.D. (University of California-Irvine), B.S. (Hiram College), Professor, Department of Physics, 1986.

Herzog, Joseph B., Ph.D. (University of Notre Dame), B.S. (Louisiana State University), Assistant Professor, Department of Physics, 2013.

Hestekin, Jamie A., Ph.D. (University of Kentucky), B.S.Ch.E. (University of Minnesota-Duluth), Professor, Ralph E. Martin Department of Chemical Engineering, 2006.

Heyes, Colin David, Ph.D. (Georgia Institute of Technology), B.S. (Loughborough University), Associate Professor, Department of Chemistry and Biochemistry, 2008.

Huitink, David, Ph.D., M.S.M.E., B.S.M.E. (Texas A&M University), Assistant Professor, Department of Mechanical Engineering, 2017.

Jensen, Morten O., Ph.D. (University of Aarhus, Denmark), M.Sc. (Georgia Institute of Technology), Associate Professor, Department of Biomedical Engineering, 2014.

Kumar, Pradeep, Ph.D. (Boston University), M.Sc. (Indian Institute of Technology, Mumbai, India), Assistant Professor, Department of Physics, 2013.

Malshe, Ajay P., Ph.D., M.S., B.S. (University of Poona, India), Distinguished Professor, Department of Mechanical Engineering, 1995.

Manasreh, Omar, Ph.D. (University of Arkansas), M.S. (University of Puerto Rico-Rio Piedras), B.S. (University of Jordan), Professor, Department of Electrical Engineering, 2003.

McCann, Roy A., Ph.D. (University of Dayton), M.S.E.E., B.S.E.E. (University of Illinois), Professor, Department of Electrical Engineering, 2003.

Millett, Paul, Ph.D., M.S. (University of Arkansas), B.E. (Vanderbilt University), Assistant Professor, Department of Mechanical Engineering, 2013.

Moradi, Mahmoud, Ph.D. (North Carolina State University), M.S., B.S. (Sharif University of Technology), Assistant Professor, Department of Chemistry and Biochemistry, 2015.

Muldoon, Timothy J., M.D. (Baylor College of Medicine), Ph.D. (Rice University), B.S. (Johns Hopkins University), Assistant Professor, Department of Biomedical Engineering, 2012.

Nair, Arun, Ph.D. (Virginia Tech), M.S. (Colorado State University), B.T. (Mahatma Gandhi University), Assistant Professor, Department of Mechanical Engineering, 2013.

Naseem, Hameed A., Ph.D., M.S. (Virginia Polytechnic State University), M.Sc. (Panjab University), University Professor, Department of Electrical Engineering, 1985.

Pohl, Edward A., Ph.D., M.S.R.E. (University of Arizona), M.S.E.E. (Air Force Institute of Technology), M.S.E.M. (University of Dayton), B.S.E.E. (Boston University), Professor, Department of Industrial Engineering, 2004.

Porter, Errol, M.S.E.E., B.S.E.E. (University of Arkansas), Research Associate, Microelectronics-Photonics, 1997.

Salamo, Gregory J., Ph.D. (City University of New York), M.S. (Indiana University-Purdue University-Indianapolis), B.S. (City University of New York, Brooklyn College), Distinguished Professor, Department of Physics, 1975.

Selvam, R. Panneer, Ph.D. (Texas Tech University), M.S.C.E. (South Dakota School of Mines and Technology), M.E., B.E. (University of Madras, India), University Professor, Department of Civil Engineering, 1986.

Shew, Woodrow L., Ph.D. (University of Maryland-College Park), B.A. (College of Wooster), Associate Professor, Department of Physics, 2012.

Singh, Surendra P., Ph.D., M.A. (University of Rochester), M.Sc., B.Sc. (Banaras Hindu University, India), University Professor, Department of Physics, 1982.

Tung, Steve, Ph.D., M.S.M.E. (University of Houston), B.S.M.E. (National Taiwan University), Professor, Department of Mechanical Engineering, 2000.

Wang, Yong, Ph.D., M.S. (University of California, Los Angeles), B.S. (University of Science and Technology of China), Assistant Professor, Department of Physics, 2015.
Courses

MEPH 5253. Emerging Technologies in Industry. 3 Hours.
Business leaders present technologies used by their companies. Focusing on Arkansas-based companies, technology needs for the industry and innovative ideas for solutions or advancements are discussed. Students work to develop solutions to address company needs or further develop a company’s current technology. May be repeated for up to 9 hours of degree credit.

MEPH 5383. Research Commercialization and Product Development. 3 Hours.
This survey course examines research commercialization through analysis of IP, technology space, market space, manufacturability, financials, and business plans. Entrepreneurial behaviors and product development within large companies are also discussed. A case study using a current UA faculty member’s research commercialization effort will be developed. Prerequisite: Graduate Standing.

MEPH 5393. Product Development Process. 3 Hours.
Demonstration of a student’s technical and management knowledge integration by creating a commercially viable product development process to meet a new societal need, with the technical solution based on micro to nanoscale technology. Final grade based on a detailed written report and oral presentation to a panel. Non-thesis students only. Pre- or Corequisite: MEPH 5383. Prerequisite: Instructor permission.

MEPH 5513. Applied Research in External Technical Organizations. 3 Hours.
A one semester narrow focus graduate level research effort while working at an external technical organization’s site. Requires a final report of style and quality suitable for journal submission. This course available only to Professional Path M.S. microEP students, and may substitute for an MEPH 588V External Internship. May be repeated for up to 6 hours of degree credit.

MEPH 5523. Applied On-Campus Collaborative Research with External Technical Organizations. 3 Hours.
A one semester narrow focus graduate level on-campus research effort performed in collaboration with an external technical organization. Requires a final report of style and quality suitable for journal submission. This course available only to Professional Path M.S. microEP students. May be repeated for up to 6 hours of degree credit.

MEPH 555V. Internship in External Technical Organization. 1-3 Hours.
Used to document a microEP grad student internship experience in an external technical organization for a minimum duration of six weeks (6-9 weeks=one hour, 10-12 weeks=two hours, and 13-15 weeks=three hours). It may not be used to meet the research requirements of a M.S. degree. Prerequisite: Graduate standing.

MEPH 5611. Research Communication Seminar of MS Students. 1 Hour.
This course serves as a forum for MS students to develop oral presentation skills and to exchange research ideas. Research presentations will be on various topics in the area of micro to nanoscale materials, processing, and devices, with research management and planning also being addressed. Prerequisite: Graduate standing.

MEPH 5713. Advanced Nanomaterials Chemistry. 3 Hours.
Science and engineering graduates are using more nanomaterials, and modern industry demands that its scientists and engineers have materials chemistry knowledge. Materials from the micro to nanoscale will be examined in this course from the perspective of fundamental chemistry principles to build a picture of tomorrow’s materials. May be repeated for up to 3 hours of degree credit.

MEPH 5733L. Fabrication at the Nanoscale. 3 Hours.
This hands-on lab course will cover the disciplines needed to make active electronic and photonic devices utilizing nanoscale structures and fabrication techniques presently used in research and industry. Prerequisite: Graduate standing and permission of the instructor.

MEPH 5742. Transmission Electron Microscopy Theory and Operation. 2 Hours.
This new laboratory course will introduce students to practical electron microscopy and to the operation of the Titan S/TEM for examination of sub-angstrom examination of materials. Students will learn how to conduct a TEM study, how to operate the TEM, and how to extract and interpret useful information. Prerequisite: Graduate standing.

MEPH 5811. 1st Year Operations Seminar - Infrastructure Management. 1 Hour.
Weekly seminar for 1st year Microelectronics-Photonics graduate students to discuss issues that increase professional performance in technology-centered organizations. The discussions will focus on issues that affect organizational infrastructure, career planning, organizational structures, and may include examples from current events. Prerequisite: Graduate standing.

MEPH 5821. Ethics for Scientists and Engineers. 1 Hour.
This course will introduce methods useful in the practice of ethical decision making in the high technology academic and industrial work place. An emphasis will be placed on applying the methods discussed in the text to student and instructor past professional experiences. Prerequisite: graduate standing.

MEPH 5832. Proposal Writing and Management. 2 Hours.
This course introduces factors that affect proposal success in both the academic and industrial arenas; demonstrates different approaches to writing successful proposals; and introduces students to the legal responsibilities and ramifications of proposal management. Students will write two proposals for peer review and formal evaluation. Prerequisite: Graduate standing.

MEPH 587V. Special Topics in Microelectronics-Photonics. 1-4 Hour.
Consideration of current microelectronic-photonic topics not covered in other courses. One section will be created for each topic only after a syllabus is submitted to the microEP office by the faculty member teaching the course. May be repeated for up to 9 hours of degree credit.

MEPH 588V. Special Problems in Microelectronics-Photonics. 1-3 Hour.
Opportunity for individual study of advanced subjects related to a graduate degree in Microelectronics-Photonics to suit individual requirements. One section will be created for each student only after a syllabus is submitted to the microEP office by the supervising faculty member. May be repeated for up to 6 hours of degree credit.

MEPH 5911. 1st Year Operations Seminar - Personnel Management. 1 Hour.
Weekly seminar for 1st year Microelectronics-Photonics graduate students to discuss issues that increase professional performance in technology-centered organizations. The discussions will focus on issues that affect personnel management, team building and structures, and may include examples from current events. Prerequisite: Graduate standing.
MEPH 626V. Emerging Technologies in Industry Practicum. 1-3 Hour.
Students engage in demand-driven research projects inspired by Arkansas companies as part of the interdisciplinary IGNITE (Industry Generating New Ideas and Technology through Education) program. These projects, which often result from interactions with companies during MEPH 5253, include visiting company locations; developing project goals, budgets, and timelines; and performing research. May be repeated for up to 9 hours of degree credit.

MEPH 6611. Research Communication Seminar of PhD Students. 1 Hour.
This course serves as a forum for Ph.D. students to develop oral presentation skills and to exchange research ideas. Research presentations will be on various topics in the area of micro to nanoscale materials, processing and devices, with research management and planning also being addressed. Prerequisite: Graduate standing.

MEPH 6811. 2nd Year Operations Seminar - Management and Leadership. 1 Hour.
Weekly seminar for 2nd year Microelectronics-Photonics graduate students to discuss issues that increase professional performance in technology-centered organizations. The discussions will focus on issues that affect management and leadership effectiveness and efficiency, and may include examples from current events. Prerequisite: Graduate standing.

MEPH 6911. 2nd Year Operations Seminar - Advanced Management and Leadership. 1 Hour.
Weekly seminar for 2nd year Microelectronics-Photonics graduate students to discuss advanced issues that increase professional performance in technology-centered organizations. The discussions will focus on the complex issues that affect management and leadership effectiveness and efficiency, and may include examples from current events. Prerequisite: Graduate standing.