Crop, Soil and Environmental Sciences (CSES)

Robert Bacon
Department Head
115 Plant Sciences Building
479-575-2354
Email: drkidd@uark.edu (raamstr@uark.edu)

Crop, Soil and Environmental Sciences Website (http://cese.uark.edu)

Degrees Conferred:
M.S., Ph.D. (CSES)

Areas of Study: Crop sciences, soil sciences, and environmental sciences. Areas of specialization within these concentrations include plant breeding and genetics, biotechnology, water quality, environmental science, crop physiology, crop production, weed science, pesticide residue, seed technology, soil chemistry, soil classification, soil fertility, soil microbiology, and soil physics.

Primary Areas of Faculty Research: Environmental, soil, and water science (biommediation, soil and water quality, microbial ecology, nutrient management, natural resource management using GIS); plant sciences (plant breeding and genetics, plant biotechnology, plant physiology, weed science), and agronomic production science.

Prerequisites to Degree Programs: While extensive undergraduate training in agriculture and physical and biological science is desirable, no specific prerequisites are required. Deficiencies in undergraduate major or prerequisites for advanced courses may be included in the student’s program.

M.S. in Crop, Soil and Environmental Science

Requirements for the Master of Science Degree:

Thesis option: Minimum of 24 semester hours of course work as outlined by the student’s graduate advisory committee plus six semester hours of thesis credit. The student will be given an oral examination after the thesis is completed.

Non-Thesis M.S. option: Some students wishing to obtain an M.S. degree may be better served by a program that emphasizes additional course work in the environmental and crop sciences rather than the research thesis program. Students must be approved by the department's Graduate Committee for admission into the non-thesis option before developing a program of study in concert with the student's major adviser and his/her graduate advisory committee. A minimum of 33 hours of graduate-level course work is required, including a graduate statistics class, a communication course, preferably CSES 5103 Scientific Presentations, a 3-hour research experience taken as CSES 502V Special Problems Research, that requires the student to demonstrate scientific thinking, synthesizing, and writing skills, a minimum of 9 hours of graduate courses at the 5000 level or higher in the plant, soil, or other relevant sciences in addition to the communication (CSES 5103) and Special Problems Research (CSES 502V) courses, and an exit seminar.

The student will interact with his/her major adviser and graduate advisory committee in completing the agreed-upon course of study and must pass an oral and a written examination given by the advisory committee over all course work completed for the degree.

Students should also be aware of Graduate School requirements with regard to master's degrees (http://catalog.uark.edu/graduatecatalog/degreerequirements/#mastersdegreestext).

Ph.D. in Crop, Soil and Environmental Science

Requirements for the Doctor of Philosophy Degree: After a student has been admitted to the Graduate School and accepted by the department as being qualified for advanced work, the student is assigned to a major adviser. The major adviser will, in consultation with the department head, select a graduate committee. This committee will serve both in an advisory capacity for the student’s program and as the dissertation and examination committee. The student’s graduate advisory committee will determine the number of hours of course work to be completed for the degree.

The student must take candidacy examinations (prelims) in at least five fields of study after completing approximately two years of graduate study and at least one year before completing all other requirements. Preliminary examinations must be written and oral. Further details regarding requirements for the Doctor of Philosophy degree are available in the department office.

Students should also be aware of Graduate School requirements with regard to doctoral degrees (http://catalog.uark.edu/graduatecatalog/degreerequirements/#phdandddegreestext).

Graduate Faculty

B
Bacon, Robert Keith, Ph.D. (Purdue University), M.S., B.S.A., (University of Arkansas), Professor, 1984.
Barber, Thomas, Ph.D., M.S., B.S. (University of Arkansas), Professor, 2007.
Bartlett, Andrew, Ph.D., M.S. (University of Georgia), M.S. (College of Charleston), B.S. (Coastal Carolina University), Clinical Assistant Professor, 2016.
Bourland, Fred, Ph.D. (Texas A&M University), M.S., B.S. (University of Arkansas), Professor, 1988.
Burgos, Nilda Roma, Ph.D., M.S. (University of Arkansas), B.S. (Visayas State College of Agriculture-Philippines), Professor, 1998.

C
Counce, Paul Allen, Ph.D. (University of Georgia), M.S. (Purdue University), B.S. (University of Tennessee-Martin), Professor, 1983.

D
Daniels, Michael B., Ph.D., M.S. (University of Arkansas), B.S. (Pennsylvania State University), Professor, 1996.
Espinoza, Leonel A., Ph.D., M.S. (University of Florida), B.S. (Iowa State University), Associate Professor, 2003.

G
Gbur, Edward E., Ph.D., M.S. (The Ohio State University), B.S. (Saint Francis University), Professor, 1987.
CSES 5133. Ecology and Morphology of Weedy and Invasive Plants. 3 Hours. (Formerly CSES 4133.) Study of weeds as economic pests occurring in both agricultural and nonagricultural situations and including poisonous plants and other specific weed problems. Gross morphological plant family characteristics which aid identification, habitat of growth and distribution, ecology, competition, and allelopathy are discussed. Lecture 2 hours, laboratory 2 hours a week. Graduate degree credit will not be given for both CSES 4133 and CSES 5133. Corequisite: Lab component. Prerequisite: CSES 2103 or HORT 2003.

CSES 5143. Principles of Weed Control. 3 Hours. (Formerly CSES 4143.) Advanced concepts and technology used in modern weed control practices and study of the chemistry and specific activity of herbicides in current usage. Lecture 2 hours, laboratory 2 hours per week. Graduate degree credit will not be given for both CSES 4143 and CSES 5143. Corequisite: Lab component. Prerequisite: CHEM 1073 and CHEM 1071L.

CSES 5214. Analytical Research Techniques in Agronomy. 4 Hours. Preparation and analysis of plant and soil samples utilizing spectrophotometry, isotopes, and chromatographic separation methods. Additionally, measurements are made of photosyntheses, respiration, water relationships, light, and temperatures in whole plants. Lecture 2 hours, laboratory 4 hours per week. Corequisite: Lab component. Prerequisite: BIOL 4303 and CHEM 2613 and CHEM 2611L.

CSES 5224. Soil Physics. 4 Hours. Physical properties of soils and their relation to other soil properties, growth of plants and transport of water, oxygen, heat, and solutes such as pesticides and plant nutrients. Lecture 3 hours, laboratory 3 hours per week. Corequisite: Lab component. Prerequisite: CSES 2203 and MATH 1203.

CSES 5233. Plant Genetic Engineering. 3 Hours. Topics will be covered in the field of in vitro plant biology, transgene genetics and crop genetic engineering. Concepts and applications of transgenic plant technology will be discussed, with the emphasis on the strategies for crop improvement and gene discovery. Lecture 3 hours.

CSES 5253. Soil Classification and Genesis. 3 Hours. (Formerly CSES 4253.) Lecture and field evaluation of soil properties and their relation to soil genesis and soil classification with emphasis on soils of Arkansas. Lecture 2 hours, laboratory 2 hours per week. Graduate degree credit will not be given for both CSES 4253 and CSES 5253. Corequisite: Lab component. Prerequisite: CSES 2203 and CSES 2201L.

CSES 5264. Microbial Ecology. 4 Hours. A study of the microorganisms in soil and the biochemical processes for which they are responsible. Lecture 3 hours, laboratory 3 hours per week. Additional suggested prerequisites are BIOL 2013, CSES 2203, and ENSC 3003. Corequisite: Lab component. Prerequisite: BIOL 1543 and BIOL 3863 or ENSC 3223.

CSES 5303. Bioenergy Feedstock Production. 3 Hours. (Formerly CSES 4303.) Overview of production and characteristics of cultivated crops, perennial grasses, and woody species as feedstocks for bioenergy. Fundamentals of plant growth factors, culture, harvest and storage, quality and improvement, and introduction to environmental impact, modeling, and resource utilization. Graduate degree credit will not be given for both CSES 4303 and CSES 5303. Prerequisite: MATH 1203 and BIOL 1543 or CSES 1203.

CSES 5313. Crop Simulation Models in Research, Management and Policy. 3 Hours. The basics of theory and practice of crop simulation models and their applications in crop research and management, and cropping systems planning and policy. Prerequisite: MATH 1203 and BIOL 1543 or CSES 1203 or consent of instructor. Courses in introductory chemistry and plant physiology are preferred.

CSES 5323. Soil/Water Quality in Bioenergy Feedstock Production Systems. 3 Hours. Examine concepts of soil and water quality in relation to bioenergy feedstock production, explore research related to biomass removal and by-product addition to soils, and examine the potential effects of proposed feedstock production systems on soil and water quality. Prerequisite: MATH 1203 and CSES 2203 or equivalent or consent of instructor, and CSES 4303 or CSES 5303 (formerly CSES 4303) preferred.

CSES 5453. Soil Chemistry. 3 Hours. Application of the principles of chemistry to processes of agronomic and environmental importance in soils. Soil clay mineralogy, soil solution thermodynamics, structure and reactivity of humus, surface complexation and ion exchange, electro-chemical phenomena, and colloidal stability. Prerequisite: CSES 2203 and CHEM 1123 and CHEM 1121L.

CSES 5533. Wetland Soils. 3 Hours. (Formerly CSES 4553.) This course explains the chemical, physical, and morphological characteristics of wetland soils and describes the techniques for identifying wetland soils using field indicators and monitoring equipment. This course also explains principles of wetland creation, restoration, and mitigation - all key components in assuring the sustainability of valuable wetland resources. Graduate degree credit will not be given for both CSES 4553 and CSES 5533. Prerequisite: CSES 2203 and CSES 2201L or CSES 355V.

CSES 5543. Plant Genomics. 3 Hours. Plant genetics based on the study of whole genome sequence, transcriptome and proteome. Provides an overview of the principles and techniques of experimental and in silico genomics. Covers all areas of genome research including structural, comparative and functional genomics as well as proteomics. Prerequisite: CHEM 5843 or any graduate level genetics course.

CSES 5553. Forage-Ruminant Relations. 3 Hours. Advanced chemical, physical, and botanical characteristics of forage plants, the dynamics of grazing, intake and digestion, and techniques of measuring forage utilization and systems analysis at the plant-animal interface. CSES 1203 recommended. Corequisite: Lab component. Prerequisite: ANSC 3143. This course is cross-listed with ANSC 5553.

CSES 5653. Fate and Transport of Organic Contaminants. 3 Hours. Fate and Transport of Organic Contaminants will present an overview of the transformation and transport processes that influence the environmental fate of organic contaminants, with an emphasis on agricultural pesticides. Biotic and abiotic factors influencing the movement and behavior of organic contaminants in soil and water will be covered extensively, with an emphasis on chemical mechanisms. Prerequisite: CHEM 1123 and CHEM 1121L and CSES 2203, or instructor consent.

CSES 600V. Master's Thesis. 1-6 Hour. Master's Thesis. Prerequisite: Graduate standing. May be repeated for degree credit.

CSES 700V. Doctoral Dissertation. 1-18 Hour. Doctoral Dissertation. Prerequisite: Graduate standing. May be repeated for degree credit.