Courses

GEOS 5011. Colloquium. 1 Hour.
Weekly meetings of faculty, graduates, advanced students and guests to discuss research and trends in the field of geography. (Typically offered: Spring) May be repeated for up to 2 hours of degree credit.

GEOS 5043. Foundations of Geospatial Data Analysis. 3 Hours.
Basic mathematical tools applied in geospatial technology, including trigonometry in mapping, linear algebra in remote sensing, optimization in spatial decision support, and graph theory in routing. Course develops the framework for spatial data analysis and decision support. Pre- or Corequisite: GEOS 5543. (Typically offered: Fall and Spring)

GEOS 5053. Quaternary Environments. 3 Hours.
An interdisciplinary study of the Quaternary Period, including dating methods, deposits, soils, climates, tectonics, and human adaptation. Lecture 2 hours, laboratory 2 hours per week. Prerequisite: Graduate standing. (Typically offered: Fall)

GEOS 5073. Geospatial Technologies Computational Toolkit. 3 Hours.
Basic computational tools and processes applied in geospatial software, related computer hardware components, systems and applications software, and spatial database fundamentals. Python, including SciPy and NumPy, geospatial implementations will be emphasized. No programming experience is required. Pre- or Corequisite: GEOS 5543. (Typically offered: Fall and Spring)

GEOS 5083. Geospatial Data Mining. 3 Hours.
Basic tools for analyzing, summarizing and visualizing geospatial data. Exploratory data and spatial data analysis, probability distributions and application, single and multivariate analysis and hypothesis testing, and spatial smoothing and interpolation. Emphasis will be on problem solving in geospatial settings using the R statistical language. Prerequisite: GEOS 5043 and GEO5073 or equivalent. (Typically offered: Fall and Spring)

GEOS 5093. History and Philosophy of Geography. 3 Hours.
This course familiarizes students with the history of geography, the contributions of geographers to scientific thought and theory, and research techniques that are used in geography. Emphasis is given to the integration of statistical and spatial analysis, and their applications in field research. The course includes short field-based projects in and around Northwest Arkansas. (Typically offered: Spring Even Years)

GEOS 510V. Special Problems in Physical Geosciences. 1-6 Hour.
Special problems in Geosciences. Prerequisite: Graduate standing. (Typically offered: Fall, Spring and Summer) May be repeated for up to 6 hours of degree credit.

GEOS 5113. Global Change. 3 Hours.
Examines central issues of global change including natural and human induced climate change, air pollution, deforestation, desertification, wetland loss urbanization, and the biodiversity crisis. The U.S. Global Change Research Program is also examined. (Typically offered: Fall)

This course is cross-listed with ENDY 5113.

GEOS 5143. 3D Seismic Exploration. 3 Hours.
Interpretation of 3D seismic data for geological structure, stratigraphy, and pore fluid variations with emphasis on hydrocarbon exploration. Prerequisite: GEOS 4433 or GEOS 5433. (Typically offered: Spring)

GEOS 5163. Hydrogeologic Modeling. 3 Hours.
Topics include numerical simulation of ground water flow, solute transport, aqueous geochemistry, theoretical development of equations, hypothesis testing of conceptual models, limitations of specific methods, and error analysis. Emphasis on practical applications and problem solving. Prerequisite: GEOS 4033 or GEOS 5263 (formerly GEOS 4033) and computer literacy. (Typically offered: Irregular)

GEOS 5173. Urban Geography. 3 Hours.
Areal patterns of modern urban regions and the focus shaping these patterns. Emphasis is placed on American urban areas and their evolution and functional areas. Field work. Graduate degree credit will not be given for both GEOS 4073 and GEOS 5173. (Typically offered: Irregular)

GEOS 5183. Geography of the Middle East. 3 Hours.
Physical and cultural landscapes, natural and cultural resources, art and architecture, land use, political history, OPEC, and current problems of North Africa and the Middle East region west of Afghanistan are discussed. Class participation, discussions, slides and films, and student presentations will round out the class.

Graduate degree credit will not be given for both GEOS 4043 and GEOS 5183. (Typically offered: Fall)

GEOS 520V. Special Problems in Human Geography. 1-6 Hour.
Special problems in human geography. Prerequisite: Graduate standing. (Typically offered: Fall, Spring and Summer) May be repeated for up to 6 hours of degree credit.

GEOS 5213. Principles of Remote Sensing. 3 Hours.
Fundamental concepts of remote sensing of the environment. Optical, infrared, microwave, LiDAR, and in situ sensor systems are introduced. Remote sensing of vegetation, water, urban landscapes, soils, minerals, and geomorphology is discussed. The course includes laboratory exercises in GIS software and field spectroscopy. (Typically offered: Fall)

GEOS 5223. Sedimentary Petrology. 3 Hours.
Sediments and sedimentary rocks. Lecture 2 hours, laboratory 2 hours per week. Corequisite: Lab component. Prerequisite: GEOS 4223 or GEOS 5323 (formerly GEOS 4223). (Typically offered: Fall)

GEOS 5243. Political Geography. 3 Hours.
Contemporary world political problems in their geographic context. Development of the principles of political geography with emphasis upon the problems of Eastern Europe, Africa, and Southeast Asia. Graduate degree credit will not be given for both GEOS 4243 and GEOS 5243. (Typically offered: Fall Odd Years)

GEOS 5253. Geomorphology. 3 Hours.
Mechanics of landform development. Lecture 2 hours, laboratory 3 hours per week. Several local field trips are required during the semester. Graduate degree credit will not be given for both GEOS 4053 and GEOS 5253. (Typically offered: Spring)

GEOS 5263. Hydrogeology. 3 Hours.
Occurrence, movement, and interaction of water with geologic and cultural features. Lecture 3 hours per week. Graduate degree credit will not be given for both GEOS 4033 and GEOS 5263. Corequisite: Lab component. Prerequisite: MATH 2043 or MATH 2554, and GEOS 3514. (Typically offered: Spring)

GEOS 5273. Principles of Geochemistry. 3 Hours.
Introduction to fundamental principles of geochemistry from historic development to modern concepts. Graduate degree credit will not be given for both GEOS 4063 and GEOS 5273. Prerequisite: CHEM 1121L, CHEM 1123 and GEOS 2313. (Typically offered: Fall)

GEOS 5283. Economic Geology. 3 Hours.
Introduction to mineral deposits used as economic resources. Covers basic geology and geochemistry of mineral deposit formations and the formation of major classes of deposits. Examines the relationship between the distribution of ores, oil, gas, coal, and Plate Tectonics. Explores environmental issues associated with the extraction of earth resources. Graduate degree credit will not be given for both GEOS 4083 and GEOS 5283. Prerequisite: GEOS 2313. (Typically offered: Irregular)
GEOS 5293. Introduction to Global Positioning Systems and Global Navigation Satellite Systems. 3 Hours.
Fundamentals of navigation, mapping, and high-precision positioning using the Navstar Global Positioning System. Topics include datum definition and transformation, map projections, autonomous and differential positioning using both code and carrier processing, and analysis of errors. Graduate degree credit will not be given for both GEOS 4223 and GEOS 5293. (Typically offered: Fall)

GEOS 5323. Stratigraphy and Sedimentation. 3 Hours.
Introductory investigation of stratigraphic and sedimentologic factors important to the study of sedimentary rocks. Lecture 2 hours, laboratory 3 hours per week. A required weekend, two-day field trip will be conducted during the semester. Graduate degree credit will not be given for both GEOS 4223 and GEOS 5323. Corequisite: Lab component. Prerequisite: GEOS 3413. (Typically offered: Fall)

GEOS 5333. Igneous and Metamorphic Petrology. 3 Hours.
Elementary to advanced study of the origin and evolution of igneous and metamorphic rocks in a variety of plate tectonics settings. Lecture 2 hours, Laboratory 2 hours per week. Corequisite: Lab component. (Typically offered: Spring)

GEOS 5353. Meteorology. 3 Hours.
Examination of the atmospheric processes that result in multifarious weather systems. Offered as physical science. Graduate degree credit will not be given for both GEOS 4353 and GEOS 5353. (Typically offered: Fall)

GEOS 5363. Climatology. 3 Hours.
Fundamentals of topical climatology followed by a study of regional climatology. Offered as physical science. Graduate degree credit will not be given for both GEOS 4363 and GEOS 5363. (Typically offered: Spring)

GEOS 537V. Geology Field Trip. 1-2 Hour.
Camping field trip to areas of geologic interest, usually conducted during Spring Break. Graduate degree credit will not be given for both GEOS 437V and GEOS 537V. (Typically offered: Spring) May be repeated for up to 4 hours of degree credit.

GEOS 5383. Hazard & Disaster Assessment, Mitigation, Risk & Policy. 3 Hours.
Comprehensive introduction to interdisciplinary approaches to natural and environmental hazards and risk. Hazards and disaster assessment, mitigation, and policy are the focus of the class. Graduate degree credit will not be given for both GEOS 4383 and GEOS 5383. (Typically offered: Spring) May be repeated for up to 6 hours of degree credit.

GEOS 5393. Mathematical Modeling of Geological Processes. 3 Hours.
This course explores a variety of topics in applied mathematics and computational methods within the context of studying geological processes and from the perspective of a modeling practitioner. Programming is conducted in Python. Knowledge of Calculus II is necessary. (Typically offered: Irregular)

GEOS 5403. American Public Lands and Policy. 3 Hours.
The course examines the role of American federal public lands in 19th-21st century geography, history, policy, and art. It investigates the growth of conservation, preservation, and management movements in the US by looking at America's national parks, forests, dams, wildlife refuges, wilderness areas, managed and agricultural lands. Prerequisite: Graduate standing. (Typically offered: Irregular)

GEOS 5433. Geophysics. 3 Hours.
Derivation from physical principles, of the geophysical methods for mapping the Earth. Computational methods of converting gravity, magnetic, radiometric, electrical, and seismic data into geologic information. Lecture 3 hours, laboratory 2 hours per week. Graduate degree credit will not be given for both GEOS 4433 and GEOS 5433. Corequisite: Lab component. Prerequisite: MATH 2564 and PHYS 2033 and PHYS 2031L and GEOS 3514. (Typically offered: Irregular)

GEOS 5453. Introduction to Raster GIS. 3 Hours.
Theory, data structure, algorithms, and techniques behind raster-based geographical information systems. Through laboratory exercises and lectures multidisciplinary applications are examined in database creation, remotely sensed data handling, elevation models, and resource models using boolean, map algebra, and other methods. Graduate degree credit will not be given for both GEOS 4553 and GEOS 5453. (Typically offered: Fall)
This course is cross-listed with ANTH 5553.

GEOS 5463. Microtectonics. 3 Hours.
Focuses on the microstructural evolution of tectonite rocks and the constraints that can be gleaned from optical microscopic evaluation of rocks in petrographic thin-sections and hand samples. Results are evaluated in the context of plate tectonic theory and geodynamics. Knowledge of mineralogy and petrology equivalent to GEOS 2313 is required. Pre- or Corequisite: GEOS 5563. Corequisite: Lab component. (Typically offered: Fall)

GEOS 5473. Applied Climatology. 3 Hours.
Applied climatology involves the use of climatic data to solve a variety of social, economic and environmental problems, such as for clients in agriculture, water and energy management. The basic purpose of applied climatology is to help society, at all scales and levels, to achieve a better adjustment to the climatic environment. (Typically offered: Fall)

GEOS 550V. Internship in GIS & Cartography. 3-6 Hour.
Supervised experience in GIS and/or cartographic applications with municipal, county, state, or private enterprises. (Typically offered: Spring and Summer) May be repeated for up to 6 hours of degree credit.

GEOS 5523. Cartographic Design & Production. 3 Hours.
This course addresses advanced cartographic concepts (i.e. visual hierarchy, aesthetics, image cognition) and production techniques as they relate to computer-assisted mapping. Students produce a variety of maps using Adobe Illustrator (CS 4-6) software to build a map portfolio. Field trips may be required. Graduate degree credit will not be given for both GEOS 4523 and GEOS 5523. (Typically offered: Spring)

GEOS 5533. Introduction to Petroleum Geophysics. 3 Hours.
Introduction to seismic wave propagation and petroleum seismology with particular emphasis on seismic events, elastic waves, and seismic survey design. Credit will not be given for both GEOS 4533 and GEOS 5533. Prerequisite: MATH 2564, PHYS 2033, and GEOS 3514 or consent of instructor. (Typically offered: Fall)

GEOS 5543. Geospatial Applications and Information Science. 3 Hours.
An introduction to the methods and theory underlying the full range of geographic information science and spatial data types. (Typically offered: Fall and Spring)

GEOS 5553. Spatial Analysis Using ArcGIS. 3 Hours.
Applications of analysis of spatial data using ArcGIS tools in map design, on-line mapping, creating geodatabases, accessing geospatial data, geo-processing, digitizing, geocoding, spatial analysis including basic spatial statistics, analysis of spatial distributions and patterning and 3D application using ArcGIS 3D Analyst. Prerequisite: GEOS 3543 or GEOS 5543. (Typically offered: Fall and Spring)

GEOS 5563. Tectonics. 3 Hours.
Development of ramifications of the plate tectonics theory. Analysis of the evolution of mountain belts. Lecture 3 hours per week. Prerequisite: GEOS 3514. (Typically offered: Fall)

GEOS 5583. Enterprise and Multiuser GIS. 3 Hours.
GIS practice that is typical of collaborative team-based geospatial organizations. Solve real-world problems through end-to-end GIS design and implementation using ArcGIS Enterprise, extensive federal, state, and local repositories, and high quality software documentation. Includes relevant training in geospatial provenance and metadata, and in enterprise and multiuser GIS administration. Introductory-level familiarity with GIS is recommended. (Typically offered: Spring)
GEOS 4033. Water and Surface Water Hydrology to Karst; Quantification of Extreme Variability. 3 Hours. Assessment of groundwater resources in carbonate rock terrains; relation of groundwater and surface water hydrology to karst; quantification of extreme variability in karst environments; data collection rationale. Field trips required. Graduate degree credit will not be given for both GEOS 4153 and GEOS 5753. Prerequisite: GEOS 4033 or GEOS 5263 (formerly GEOS 4033). (Typically offered: Irregular)

GEOS 5783. Geography of Europe. 3 Hours. Geographic regions of the area with emphasis on their present development. Graduate degree credit will not be given for both GEOS 4783 and GEOS 5783. (Typically offered: Irregular)

GEOS 5793. Geospatial Unmanned Aircraft Systems. 3 Hours. Geospatial unmanned aircraft systems (UAS) are becoming key technologies in a number of disciplines. This course will introduce safe and legal operation of UAS in aerial photography, multispectral, thermal, and LiDAR applications, geodetic control, photogrammetric and computer vision processing, and the creation of accurate 2D and 3D digital information products. Pre- or Corequisite: GEOS 3213 or GEOS 5213 and (GEOS 4593 or GEOS 5293) or equivalent. (Typically offered: Fall)

GEOS 5853. Environmental Isotope Geochemistry. 3 Hours. Introduction to principles of isotope fractionation and distribution in geologic environments, isotopic analytical methods, and extraction of isotopes samples; application of isotopes in characterization of geologic processes and interaction with hydrologic, surficial, and biologic attenuation, paleothermometry soil, and biogeochemical processes. (Typically offered: Spring) May be repeated for up to 3 hours of degree credit. This course is cross-listed with ENDY 5853.

GEOS 5873. Geological Data Analysis. 3 Hours. Quantitative methods and techniques for analysis and interpretation of geological data. Corequisite: Lab component. Prerequisite: MATH 2564 and GEOS 3514. (Typically offered: Spring)

GEOS 5933. Ancient Forest Science and Sustainability. 3 Hours. Ancient forests preserve beautiful habitat with high ecological integrity. This course will examine the development, spatial distribution, and ongoing destruction of ancient forests worldwide, and how science can contribute to the understanding and sustainable management of these valuable resources. (Typically offered: Spring)

GEOS 5973. Seminar in GIScience. 3 Hours. Geographic information science and technology research topics of particular interest to the graduate student class. (Typically offered: Spring) May be repeated for up to 9 hours of degree credit.

GEOS 5993. Dynamics of Sediment Transport. 3 Hours. The course will give aspiring geologists and civil engineers tools for solving sedimentological problems in their fields. Starting from a grounding in fluid mechanics, we will learn how sediment is transported and stratigraphy accumulated. This will be applied to problems in sedimentology at all scales. (Typically offered: Fall Odd Years)

GEOS 600V. Master's Thesis. 1-6 Hours. Master's thesis. Prerequisite: Graduate standing. (Typically offered: Fall, Spring and Summer) May be repeated for degree credit.

GEOS 700V. Doctoral Dissertation. 1-9 Hours. Dissertation research. Prerequisite: Graduate standing and Ph.D. candidacy (Typically offered: Fall, Spring and Summer) May be repeated for degree credit.