Courses

MEEG 2003. Statics (Sp, Su, Fa). 3 Hours.

Equilibrium and resultants of force systems in a plane and in space; analysis of structures, friction, centroids, moments of inertia, and virtual work method. Methods of analysis are emphasized. Corequisite: Drill component. Pre- or Corequisite: MATH 2574 or MATH 2574C. Prerequisite: PHYS 2054.

This course is cross-listed with MEEG 2003H.

MEEG 2003H. Honors Statics (Sp, Su, Fa). 3 Hours.

Equilibrium and resultants of force systems in a plane and in space; analysis of structures, friction, centroids, moments of inertia, and virtual work method. Methods of analysis are emphasized. Corequisite: Drill component. Pre- or Corequisite: MATH 2574 or MATH 2574C. Prerequisite: PHYS 2054 and honors standing.

This course is cross-listed with MEEG 2003.

MEEG 2013. Dynamics (Sp, Su, Fa). 3 Hours.

Kinematics and kinetics of particle and of rigid bodies; work and energy; impulse and momentum, and special topics. Corequisite: Drill component. Prerequisite: MEEG 2003 or (CVEG 2014 and MATH 2574).

MEEG 2100. Computer-aided Design Competency (Sp, Fa). 0 Hours.

Students entering the Mechanical Engineering Department are expected to possess basic competency in computer-aided design. Students need to pass a competency test. Deficiencies may be remedied through self-paced, computer-based instruction. Prerequisite: GNEG 1121 or GNEG 1121H or GNEG 1103.

MEEG 2103. Introduction to Machine Analysis (Sp, Su). 3 Hours.

Introduction to kinematics and kinetics of mechanisms, static and dynamic forces, gears and cam design and analysis. Recitation three hours per week and drill one hour per week. Corequisite: Drill component. Pre- or Corequisite: MEEG 2013. Prerequisite: PHYS 2074 and MEEG 2100.

MEEG 2303. Introduction to Materials (Sp, Fa). 3 Hours.

A study of chemical, physical, and electrical properties of materials using fundamental atomistic approach. The materials of interest are: metals, polymers, ceramics, and composites. The interactive relationship between structure, properties, and processing of materials will be emphasized. For various engineering applications. Corequisite: Drill component. Prerequisite: MATH 2554, PHYS 2054 and either CHEM 1103 or CHEM 1113.

MEEG 2403. Thermodynamics (Sp, Su, Fa). 3 Hours.

A study of the 1st and 2nd laws of thermodynamics. Availability of energy, properties of liquids, gases, and vapors; nonflow and flow processes. Recitation 3 hours, drill 2 hours per week. Corequisite: Drill component. Prerequisite: PHYS 2054 and MATH 2564.

MEEG 2703. Computer Methods in Mechanical Engineering (Sp, Su). 3 Hours.

Use of computers and programming for solving engineering problems. Basic numerical methods including errors, equation solution, matrices, optimization, regression, integration, and differential equations. Corequisite: Drill component. Pre- or Corequisite: MATH 2584.

MEEG 3013. Mechanics of Materials (Sp, Su, Fa). 3 Hours.

Stress and deformation of members in tension, compression, torsion, and bending, and the design of these members. Columns, statically indeterminate beams, and simple connections. Corequisite: Drill component. Prerequisite: MEEG 2003.

MEEG 3113. Machine Dynamics and Control (Su, Fa). 3 Hours.

The principles of kinematics and kinetics for rigid body motion from dynamics are reviewed and applied to machine components with the goal being to determine their impact on machine behavior and performance. The time varying forces created by the movement of machine components are used to describe the machine's vibrational motion and elementary control principles are introduced with the goal of describing how these motions might be reduced or eliminated. Corequisite: Drill component. Prerequisite: MEEG 2103, MATH 2584 or MATH 2584C, MEEG 2703, and MEEG 2013.

MEEG 3202L. Mechanical Engineering Laboratory I (Sp, Fa). 2 Hours.

Introduction to measurement, uncertainty, data acquisition, and instrumentation with an emphasis in materials and manufacturing. Corequisite: Drill component. Pre or Corequisite: MEEG 3013. Prerequisite: MEEG 2303 and PHYS 2074.

MEEG 3212L. Mechanical Engineering Laboratory II (Sp, Fa). 2 Hours.

Design and implementation of measurements, fabrication processes, data acquisition, and data analysis with emphasis in mechanical and fluid systems. Corequisite: Drill component. Prerequisite: ELEG 3903, MEEG 3202L, MEEG 3503 and MEEG 3113.

MEEG 3503. Mechanics of Fluids (Su, Fa). 3 Hours.

A study of fluids including properties, pressure forces, and field flow utilizing conservation of mass, conservation of energy, and momentum principles. Pre- or Corequisite: MATH 2584. Prerequisite: MEEG 2403.

MEEG 4003. Intermediate Dynamics (Irregular). 3 Hours.

Review of central-force motion of spacecraft, use of rotating reference frames, Coriolis acceleration. Kinematics of rigid bodies in 3-D space: velocities and accelerations in different moving reference frames, addition theorem of angular accelerations. Kinetics of rigid bodies in 3-D space: eigenvalues and eigenvectors of inertia matrices, momentum and kinetic energy of a rigid body in 3-D motion, Euler's equations of motion; precession, nutation, and spin of a gyroscope; forced steady precession, torque free steady precession, space cone, and body cone. Prerequisite: MEEG 2013.

MEEG 4023. Composite Materials: Analysis and Design (Irregular). 3 Hours.

A study of fibrous composite materials with emphasis on mechanical behavior, synthesis, and application. Topics include macro- and micromechanical analysis lamina, lamina theory, failure analysis in design, and manufacturing techniques. Prerequisite: MEEG 3013.

MEEG 4104. Machine Element Design (Sp, Su). 4 Hours.

Select design components commonly used in modern machines, principally for energy transmission. Students will be required to design a small system and present their design to the class. Prerequisite: MEEG 3013. Pre- or Corequisite: MEEG 3113.

This course is equivalent to MEEG 4103.

MEEG 4104H. Honors Machine Element Design (Sp, Su). 4 Hours.

Select design components commonly used in modern machines, principally for energy transmission. Students will be required to design a small system and present their design to the class. Advanced project required of honors students. Advanced project required. Prerequisite: MEEG 3013. Pre - or Corequisite: MEEG 3113.

This course is equivalent to MEEG 4103.

MEEG 4123. Finite Element Methods I (Irregular). 3 Hours.

Introduction to the use of the finite element method in mechanical engineering analysis and design. Use of commercial software to solve thermal and mechanical problems. Pre- or Corequisite: MEEG 3013 and MEEG 4413.

MEEG 4131. Creative Project Design I (Sp, Fa). 1 Hour.

Students will select a capstone design project, and each student group will prepare a formal written proposal on their project for presentation to a panel of judges. This group project will be carried to completion in MEEG 4133. Pre- or Corequisite: MEEG 4104 or MEEG 4483.

MEEG 4132. Professional Engineering Practices (Sp, Fa). 2 Hours.

Design proposal preparation, design codes, professional ethics, engineering economics, and the role of the engineer in society. Pre- or Corequisite: MEEG 4104 or MEEG 4483.

MEEG 4133. Creative Project Design II (Sp, Fa). 3 Hours.

Student groups will present their final capstone design proposal to a faculty panel and then carry out their project to completion. Each student group will make timely progress reports, complete their design project, and present their final report to a panel of judges. Prerequisite: MEEG 4131.

MEEG 4143. Design for Safety (Irregular). 3 Hours.

This course provides an overview of safety engineering and a framework from which the students can evaluate and develop mechanical and thermal systems from a safety perspective. Pre- or Corequisite: MEEG 4413. Prerequisite: MEEG 3013.

MEEG 4153. Fundamentals of Mechanical Design (Fa). 3 Hours.

This class is designed to provide engineering students with a head start in industry as design engineers or working in an engineering related function. The course contents cover machine design and analysis experiences as related to working in industry and performing consulting work. Major topics include the design process, design procedures, fasteners, general design and numerous consulting experiences. A concept design exercise and two special design projects will be assigned to the students as homework. Prerequisite: MEEG 4104.

MEEG 4202L. Mechanical Engineering Laboratory III (Sp, Su, Fa). 2 Hours.

Application of measurement techniques to mechanical engineering problems which emphasize mechanical and thermal systems. Corequisite: Drill component. Pre- or corequisite: MEEG 4483. Prerequisite: MEEG 3212L and MEEG 4104.

MEEG 4213. Control of Mechanical Systems (Irregular). 3 Hours.

Mathematical modeling for feedback control of dynamic mechanical systems with design techniques using LaPlace transforms, state variables, root locus, frequency analysis, and criteria for performance and stability. Prerequisite: MEEG 3113.

MEEG 4233. Microprocessors in Mechanical Engineering I: Electromechanical Systems (Irregular). 3 Hours.

Microcomputer architectural, programming, and interfacing. Smart product design (microprocessor-based design). Control of DC and stepper motors and interfacing to sensors. Applications to robotics and real-time control. Mobile robot project. Digital and analog electronics are reviewed where required. Prerequisite: ELEG 3903.

MEEG 4253. Introduction to Robotics (Fa). 3 Hours.

This course serves as an introduction to robotics. The course covers the historical development of robotics as a field, and as mechatronic systems, the importance of integrating sensors, actuators and end-effectors. Topics covered in this course will include but not limited to the following: mathematical modeling of robots, rigid motions and homogeneous transformation, forward/inverse kinematics, and velocity kinematics. Prerequisite: MEEG 2703, MEEG 3113 and instructor consent.

MEEG 4303. Materials Laboratory (Irregular). 3 Hours.

A study of properties, uses, testing, and heat treatment of basic engineering materials and related analytical techniques. Corequisite: Lab component. Prerequisite: MEEG 2303.

MEEG 4303H. Honors Materials Laboratory (Irregular). 3 Hours.

A study of properties, uses, testing, and heat treatment of basic engineering materials. Corequisite: Lab component. Prerequisite: MEEG 2303 and MEEG 3013.

This course is equivalent to MEEG 4303.

MEEG 4313. Introduction to Tribology (Irregular). 3 Hours.

A study of science and technology of interacting surfaces in relative motion. Topics include solid surface characterization, contact between solid surfaces, adhesion, friction, wear, lubrication, micro/nanotribology, friction and wear screening test methods, and tribological components and applications. Prerequisite: MEEG 3013 and MEEG 3503 or graduate standing.

MEEG 4323L. Nanotechnology Laboratory (Fa). 3 Hours.

Provides students with hands-on experience in several major areas of nanotechnology, including nanoscale imaging, synthesis of nanomaterials, nanostructure assembly and manipulation, device and system integration, and performance evaluation. Students can earn credit for only one of the following courses: MEEG 4323L, BENG 4753L, BMEG 4103L, CHEM 4153L, PHYS 4793L. Corequisite: Drill component, junior standing and instructor consent. Prerequisite: MATH 2564 and PHYS 2074.

This course is cross-listed with CHEM 4153L, PHYS 4793L.

MEEG 4323M. Honors Nanotechnology Laboratory (Fa). 3 Hours.

Provides students with hands-on experience in several major areas of nanotechnology, including nanoscale imaging, synthesis of nanomaterials, nanostructure assembly and manipulation, device and system integration, and performance evaluation. Students can earn credit for only one of the following courses: MEEG 4323L, BENG 4753L, BMEG 4103L, CHEM 4153L, PHYS 4793L. Corequisite: Drill component, junior standing and instructor consent. Prerequisite: MATH 2564 and PHYS 2074.

MEEG 4413. Heat Transfer (Sp, Su). 3 Hours.

Basic thermal energy transport processes; conduction, convection, and radiation; and the mathematical analysis of systems involving these processes in both steady and time-dependent cases. Prerequisite: MEEG 3503 and MEEG 2703.

MEEG 4423. Power Generation (Irregular). 3 Hours.

Study of design and operational aspects of steam, gas, and combined cycle power plants. Brief study of Nuclear and Alternative energy systems. Prerequisite: MEEG 3503.

MEEG 4433. Aerospace Propulsion (Irregular). 3 Hours.

Principles, operation, and characteristics of gas turbine and rocket engines. Brief study of novel spacecraft propulsion systems. Prerequisite: MEEG 3503.

MEEG 4453. Industrial Waste and Energy Management (Irregular). 3 Hours.

Applications of thermodynamics, heat transfer, fluid mechanics, and electric machinery to the analysis of waste streams and energy consumption for industrial facilities. Current techniques and technologies for waste minimization and energy conservation including energy-consuming systems and processes, utility rate analysis, economic analysis and auditing are taught. Prerequisite: MEEG 4413.

MEEG 4473. Indoor Environmental Control (Irregular). 3 Hours.

Gives student a thorough understanding of the fundamental theory of air conditioning design for commercial buildings, including calculating heating and cooling loads along with the proper selection and sizing of air conditioning equipment. Prerequisite: MEEG 4413.

MEEG 4483. Thermal Systems Analysis and Design (Su, Fa). 3 Hours.

Analysis design and optimization of thermal systems and components with examples from such areas as power generation, refrigeration, and propulsion, Availability loss characteristics of energy systems and availability conservation methods. Prerequisite: MEEG 4413.

MEEG 4483H. Honors Thermal Systems Analysis and Design (Su, Fa). 3 Hours.

Analysis design and optimization of thermal systems and components with examples from such areas as power generation, refrigeration, and propulsion. Availability loss characteristics of energy systems and availability conservation methods. Additional topics, with an additional design project and /or more rigorous approach to design projects for honors course. Advanced project required. Prerequisite: MEEG 4413.

This course is equivalent to MEEG 4483.

MEEG 4493. Internal Combustion Engines (Irregular). 3 Hours.

Study of the design of internal combustion engines, including emissions and performance issues. Pre- or Corequisite: MEEG 3503.

MEEG 4503. Introduction to Flight (Fa). 3 Hours.

The course will provide understanding in basic aerodynamics, airfoil design and characteristics, and flight control surfaces. Prerequisite: MATH 2584, MEEG 3503.

MEEG 4503H. Honors Introduction to Flight (Fa). 3 Hours.

The course will provide understanding in basic aerodynamics, airfoil design and characteristics, and flight control surfaces. Prerequisite: MATH 2584 and MEEG 3503.

This course is equivalent to MEEG 4503.

MEEG 4523. Astronautics (Irregular). 3 Hours.

Study of spacecraft design and operations. Prerequisite: MEEG 2013 and MEEG 2403 or consent of instructor.

MEEG 4703. Mathematical Methods in Engineering (Irregular). 3 Hours.

Determinants, matrices, inverse of a matrix, simultaneous equations, eigenvalues, eigenvectors, coordinate transformations for matrices, diagonalization, square roots of a matrix, cryptography, and method of least squares. Vector algebra and calculus, Green's theorem, Strokes' theorem, and Gauss' divergence theorem. Index notation, epsilon-delta identity, and Cartesian tensors. Curvilinear coordinates, base vectors, and covariant and contravariant tensors. Applications to mechanics. Prerequisite: MATH 2574.

MEEG 4903H. Honors Mechanical Engineering Research (Sp, Fa). 3 Hours.

Independent research for mechanical engineering honors students. Prerequisite: Honors standing and instructor consent.

MEEG 491V. Special Topics in Mechanical Engineering (Sp, Su, Fa). 1-6 Hour.

Consideration of current mechanical engineering topics not covered in other courses. May be repeated for up to 6 hours of degree credit.

MEEG 491VH. Honors Special Topics in Mechanical Engineering (Sp, Su, Fa). 1-6 Hour.

Consideration of current mechanical engineering topics not covered in other courses. Prerequisite: Honors standing. May be repeated for up to 6 hours of degree credit.

MEEG 492V. Individual Study in Mechanical Engineering (Sp, Su, Fa). 1-3 Hour.

Individual study and research on a topic of mutually agreeable interest to the student and a faculty member. Prerequisite: Senior standing.

MEEG 492VH. Honors Individual Study in Mechanical Engineering (Sp, Su, Fa). 1-3 Hour.

Individual study and research on a topic of mutually agreeable interest to the student and a faculty member. Prerequisite: Senior standing.

This course is equivalent to MEEG 492V.

MEEG 5033. Advanced Mechanics of Materials I (Irregular). 3 Hours.

Combined stress, theories of failure, thick-walled cylinders, bending of unsymmetrical sections, torsion in noncircular section, plate stresses, and strain energy analysis. Prerequisite: MEEG 2013 and MEEG 3013.

MEEG 5103. Structural Dynamics (Irregular). 3 Hours.

The forced and random vibration response of complex structural systems are studied through the use of the finite element method. Computational aspects of these problems are discussed and digital computer applications undertaken. Prerequisite: MEEG 3113 and MEEG 4104 and graduate standing.

MEEG 5113. Modal Analysis Methods (Irregular). 3 Hours.

Fundamental concepts of both analytical and experimental modal analysis methods are examined and applied to the study of complex structural systems. Computational aspects of these problems are discussed, and digital computer applications undertaken with experimental verification. Prerequisite: MEEG 5103 and graduate standing.

MEEG 5123. Finite Elements Methods II (Irregular). 3 Hours.

Development and application of finite element (FE) methods used to solve transient and two-dimensional boundary value problems. Applications are taken from solid and fluid mechanics, heat transfer, and acoustics. Emphasis is placed on the FE methodology in order to make accessible the research literature and commercial software manuals, and to encourage responsible use and interpretation of FE analysis. Prerequisite: MEEG 4123 and graduate standing or consent.

MEEG 5143. Advanced Machine Design (Irregular). 3 Hours.

Application of advanced topics such as probability theory, fracture mechanics, and computer methods to the design and analysis of complex mechanical systems. Prerequisite: MEEG 4104 and graduate standing.

MEEG 5203. Robot Modeling and Simulation (Sp). 3 Hours.

This is a graduate level course in Robotics dealing with the behavioral study of robots. Topics covered in this course will include but not limited to the following: mathematical modeling of robots, rigid motions and homogeneous transformation, forward/inverse kinematics of robots, velocity kinematics, path and trajectory planning, robot dynamics, joint control, PD/PID control, and multivariable control. Advanced topics may include passivity-based motion control, geometric nonlinear control, computer vision, vision-based control, and sensor fusion. Prerequisite: Graduate standing in MEEG or ELEG and consent of the instructor.

MEEG 5253. Bio-Mems (Sp). 3 Hours.

Topics include the fundamental principles of microfluidics, Navier-Stokes Equation, bio/abio interfacing technology, bio/abio hybrid integration of microfabrication technology, and various biomedical and biological problems that can be addressed with microfabrication technology and the engineering challenges associated with it. Lecture 3 hours per week. Prerequisite: MEEG 3503 or CVEG 3213 or CHEG 2133.

This course is cross-listed with BENG 5253.

MEEG 5263. Introduction to Micro Electro Mechanical Systems (Fa). 3 Hours.

A study of mechanics and devices on the micro scale. Course topics will include: introduction to micro scales, fundamentals of microfabrication, surface and bulk micromachining, device packaging, device reliability, examples of micro sensors and actuators. Recitation three hours per week.

MEEG 5273. Electronic Packaging (Irregular). 3 Hours.

An introductory treatment of electronic packaging from single chip to multichip including materials, electrical design, thermal design, mechanical design, package modeling and simulation, processing considerations, reliability, and testing. Credit cannot be earned for both MEEG 5273 and ELEG 5273. Prerequisite: (ELEG 3214 or ELEG 3933) and MATH 2584.

This course is cross-listed with ELEG 5273.

MEEG 5303. Physical Metallurgy (Irregular). 3 Hours.

Physical and chemical properties of solids and the application of materials in commerce. Prerequisite: MEEG 2303.

MEEG 5323. Physical and Chemical Vapor Deposition Processes (Irregular). 3 Hours.

Fundamental principles of materials behavior in the deposition of films by PVD/CVD. Topics include kinetic theory of gases, statistical mechanics, plasmas, diagnostics, reaction rate theory, nucleation and growth, crystal structures and defects in thin films, advanced characterization techniques for thin films, and applications in microelectronics, tribology, corrosion, bio- and nano-materials. Prerequisite: Graduate standing in Engineering or consent of instructor.

MEEG 5333. Introduction to Tribology (Irregular). 3 Hours.

A study of science and technology of interacting surfaces in relative motion. Topics include solid surface characterization, contact between solid surfaces, adhesion, friction, wear, lubrication, micro/nanotribology, friction and wear screening test methods, and tribological components and applications. Students may not earn credit for both MEEG 5333 and MEEG 4313. Prerequisite: Graduate standing.

MEEG 5343. Computational Material Science (Irregular). 3 Hours.

This course provides students with an overview of different modeling techniques in material science. Applications will be presented on a broad range of modeling techniques including atomistic simulation methods, Monte Carlo techniques, molecular mechanics, and molecular dynamics. Prerequisite: Graduate standing.

MEEG 5403. Advanced Thermodynamics (Sp). 3 Hours.

An in-depth review of classical thermodynamics, including availability analysis, combustion, and equilibrium, with an introduction to quantum mechanics and statistical thermodynamics. Prerequisite: Graduate standing in Engineering or consent of instructor.

MEEG 5423. Statistical Thermodynamics (Irregular). 3 Hours.

Concepts and techniques for describing high temperature and chemically reactive gases from a molecular point of view. Introductory kinetic theory, chemical thermodynamics, and statistical mechanics applied. Prerequisite: MEEG 2403 and MATH 2574.

MEEG 5433. Combustion (Irregular). 3 Hours.

Introduction to combustion of solid, liquid, and gaseous fuels. Equilibrium and kinetics of hydrocarbon oxidation, laminar and turbulent flames, premixed and non-premixed combustion processes, ignition, quenching, stability, emissions and diagnostics. Prerequisite: Graduate standing in Engineering or consent of instructor.

MEEG 5453. Advanced Heat Transfer (Fa). 3 Hours.

More in-depth study of topics covered in MEEG 4413, Heat Transfer, and coverage of some additional topics. Prerequisite: MEEG 4413 or CHEG 3143 or equivalent.

MEEG 5473. Radiation Heat Transfer (Even years, Su). 3 Hours.

Spectral analysis, radiant exchange in gray and non-gray enclosures, gas radiation, and multi-mode heat transfer. Prerequisite: MEEG 5453 or equivalent.

MEEG 5503. Advanced Fluid Dynamics I (Sp). 3 Hours.

A basic survey of the characteristics of fluid flow under a variety of conditions with examples. Begins with a derivation of the Navier-Stokes equations and an evaluation of the dimensionless groups found from these equations. Topics to be covered include viscous laminar and turbulent boundary layers, jets and wakes, Stokes flow, inviscid flows with and without free surfaces and turbulence. Prerequisite: MEEG 3503 and MATH 2584.

MEEG 5533. Fundamentals of Aerodynamics (Irregular). 3 Hours.

A study of external-flow fluid mechanics applied to Aerodynamics. Topics include integral and differential forms of the basic fluid equations (continuity, momentum, and energy), potential flow, and supersonic flow. Prerequisite: MEEG 3503 and MEEG 4503.

MEEG 5733. Advanced Numerical Methods (Irregular). 3 Hours.

Numerical methods for the solution of linear and non-linear ordinary and partial differential equations; initial and boundary value problems; one-step and multi-step methods; predominantly finite difference but also finite element and control volume techniques; and computer applications. Graduate standing in Engineering or consent of instructor.

MEEG 590V. Master's Research Topic and Report (Sp, Su, Fa). 1-3 Hour.

Fundamental or applied research project required course for students electing the report option. Prerequisite: Graduate standing.

MEEG 591V. Special Topics in Mechanical Engineering (Sp, Su, Fa). 1-6 Hour.

Consideration of current advanced mechanical engineering topics not covered in other courses. Prerequisite: Graduate standing. May be repeated for up to 6 hours of degree credit.

MEEG 592V. Individual Study in Mechanical Engineering (Sp, Su, Fa). 1-3 Hour.

Opportunity for individual study of advanced subjects related to a graduate mechanical engineering program to suit individual requirements. Prerequisite: Graduate standing. May be repeated for up to 6 hours of degree credit.

MEEG 600V. Master's Thesis (Sp, Su, Fa). 1-6 Hour.

Prerequisite: Graduate standing.

MEEG 6800. Graduate Seminar (Sp, Fa). 0 Hours.

A periodic seminar devoted to mechanical engineering research topics. Course includes letter grades A, B, C, D, and F as well as CR.

MEEG 700V. Doctoral Dissertation (Sp, Su, Fa). 1-18 Hour.

Prerequisite: Candidacy.