Industrial Engineering
(INEG)

Ed Pohl
Head of the Department
4207 Bell Engineering Center
479-575-3156

Industrial Engineering Website (http://www.ineg.uark.edu/)

The mission of the industrial engineering department at the University of Arkansas is to be a nationally competitive, student-centered industrial engineering program serving Arkansas and the world through undergraduate and graduate studies and leading-edge research programs.

Industrial engineers are concerned with improving organized activity. The physical arrangement of people, equipment, and material significantly influences the effectiveness of any organization – whether the organization is industrial, governmental, or commercial.

Today’s industrial engineers develop applications of new processing automation and control technology; install data processing systems, performance measures and standards, job evaluation and wage and salary programs; research new products and product applications; devise ways to improve productivity through application of technology and human factors; select operating processes and methods to accomplish a given task using proper tools and equipment; design facilities, management systems, operations procedures, storage systems; improve allocation of resources, planning and control systems for distribution of goods and services, production, inventory, quality and plant maintenance; enhance plant environment and the quality of working life; evaluate reliability and quality performance; implement office systems, procedures, and policies; analyze complex business problems through operations research; conduct long-range organization studies, plant location surveys, system effectiveness studies; and study potential markets for goods and services, raw material sources, labor supply, energy resources, financing and taxes.

Industrial engineers integrate engineering skills with mathematics and computer science tools, providing systematic ways to maximize productivity and quality while minimizing time and cost.

Completion of the degree requirements provides graduates with the following learning outcomes:

- An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- An ability to communicate effectively with a range of audiences
- An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

The goal of the Industrial Engineering Undergraduate Program at the University of Arkansas is to prepare men and women for professional careers and graduate studies in Industrial Engineering. We provide a foundation in mathematics, science, humanities and social sciences, engineering science, and engineering design to produce Industrial Engineers with the intellectual, technical, and professional competence to develop, implement, and manage industrial engineering solutions to complex problems in industry, government, and society.

The program’s objectives have been developed to address the needs of the industrial engineering constituencies and to be consistent with and supportive of the department’s mission and programmatic goals. The IE program educational objectives represent and describe the expected accomplishments of graduates resulting from participation within the program within the first few years after graduation. The program’s objectives have been developed to address the needs of departmental constituencies and to be consistent with and support the mission and programmatic goals.

Within 3-5 years of graduation, graduates of the U of A undergraduate program in industrial engineering will have:

1. Successfully applied core industrial engineering knowledge and skills for industrial or public sector organizations.
2. Successfully pursued advanced professional degrees, graduate studies in industrial engineering, professional training, or engineering certification.
3. Demonstrated professional and intellectual growth as managers and leaders in industrial engineering, society, and their communities.

Requirements for B.S. in Industrial Engineering

The total graduation requirement in industrial engineering is 126 hours. For further information please visit the departmental website (http://www.ineg.uark.edu/).

Humanities/Social Science Electives

Although any elective included on the approved University Core humanities/social science list may be selected, PSYC 2003 General Psychology (ACTS Equivalency = PSYC 1103) is recommended for industrial engineers.

Science Electives

The approved list of science electives is available in the industrial engineering departmental office.

Technical Electives

The purpose of technical electives is to provide students with the opportunity to expand their education within a particular area of interest. The approved list of technical electives is available in the industrial
At least 12 hours of technical electives must be selected from INEG courses.

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2554 Calculus I (ACTS Equivalency = MATH 2405)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHEM 1103 University Chemistry I (ACTS Equivalency = CHEM 1414 Lecture)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PHYS 2054 University Physics I (ACTS Equivalency = PHYS 2034)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>GNEG 1111 Introduction to Engineering I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ENGL 1013 Composition I (ACTS Equivalency = ENGL 1013)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 2564 Calculus II (ACTS Equivalency = MATH 2505)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Freshman Science Elective1,5</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following:

- HIST 2003 History of the American People to 1877 (ACTS Equivalency = HIST 2113)
- HIST 2033 History of the American People, 1877 to Present (ACTS Equivalency = HIST 2123)
- GNEG 1121 Introduction to Engineering II
- ENGL 1023 Composition II (ACTS Equivalency = ENGL 1023)

Year Total: 15 | 15

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>INEG 2001 Industrial Engineering Seminar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>INEG 2103 Introduction to Industrial Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INEG 2313 Applied Probability and Statistics for Engineers I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INEG 2413 Engineering Economic Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 2574 Calculus III (ACTS Equivalency = MATH 2603)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Science Requirement1,2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INEG 2403 Industrial Cost Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INEG 2333 Applied Probability and Statistics for Engineers II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 2584 Elementary Differential Equations</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>MEEG 2303 Introduction to Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CSCE 2004 Programming Foundations I</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Year Total: 17 | 17

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>INEG 3623 Simulation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ELEG 3903 Electric Circuits and Machines</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fine Arts (from University/State Core List)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical Elective3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INEG 3714 Work Methods and Ergonomics</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
INEG 3613 Introduction to Operations Research 3
INEG 3513 Manufacturing Processes 3
Select one option from the following:
- ECON 2143 Basic Economics: Theory and Practice 3
- ECON 2033 Principles of Macroeconomics (ACTS Equivalency = ECON 2103)
- & ECON 2023 Principles of Microeconomics (ACTS Equivalency = ECON 2203)

Technical Elective 3
MEEG 2003 Statics 3
Year Total: 15

Fourth Year

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>INEG 4433 Systems Engineering and Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INEG 4553 Production Planning and Control</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Two Technical Elective</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Social Science (from University/State Core List)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>INEG 4911 Industrial Engineering Capstone Experience I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>INEG 4923 Industrial Engineering Capstone Experience II</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Two Technical Electives</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Humanities (from University/State Core List)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social Science (from University/State Core List)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Year Total:</td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Units in Sequence: 126

1. CHEM 1123/CHEM 1121L University Chemistry II or PHYS 2074 University Physics II
2. If the student selected CHEM 1123/CHEM 1121L as their freshman science elective then this course must be PHYS 2074 University Physics II; otherwise see the approved list of IE science electives.
3. The purpose of technical electives is to provide students with the opportunity to expand their education along lines of particular interest to them. The approved list of technical electives is available in the industrial engineering department. At least 12 hours must be selected from INEG courses.
4. Although any elective included on the humanities/social science list may be selected, PSYC 2003 General Psychology is recommended for industrial engineers.
5. The approved list of science electives is available in the industrial engineering departmental office.

Minor in Data Analytics

Requirements for the minor in Data Analytics: The minor requires completion of 15-17 credits of coursework, including:

- One course from Applied Statistics and Math Modeling group 3
 - INEG 2333 Applied Probability and Statistics for Engineers II
 - ELEG 3143 Probability & Stochastic Processes
 - STAT 2823 Biostatistics
 - STAT 3013 Introduction to Probability
 - Two courses from Computing and Informatics group 6-8

- CSCE 2004 Programming Foundations I
- CSCE 2014 Programming Foundations II
- INEG 4683 Decision Support in Industrial Engineering
- ISYS 4833 Introduction to Database Concepts for Industrial Engineers
- ISYS 2263 Principles of Information Systems
- STAT 3003 Statistical Methods
- STAT 3001L Statistics Methods Laboratory

Two courses from the Analytics group 6
- CSCE 4743 Introduction to Econometrics
- CSCE 4753 Forecasting
- ISYS 4193 Business Analytics and Visualization
- ISYS 4293 Business Intelligence
- STAT 4333 Analysis of Categorical Responses

Total Hours 15-17

Cassady, Richard, Ph.D., M.S.I.S.E., B.S.I.S.E. (Virginia Polytechnic Institute and State University), University Professor, 2000.

Chimka, Justin Robert, Ph.D., M.S.I.E., B.S.I.E. (University of Pittsburgh), Associate Professor, 2002.

Ekisoglou, Burak, Ph.D. (University of Florida), M.S.E.B.M. (University of Warwick), B.S.I.E. (Bogazici University), Professor, 2019.

Ekisoglou, Sandra, Ph.D. (University of Florida), M.S.E.M.S. (Mediterranean Agronomic Institute of Chania), B.S.B.A. (University of Tirana), Professor, 2019.

Liao, Haitao, Ph.D., M.S., M.S.I.S.E. (Rutgers University), B.S.E.E. (Beijing Institute of Technology), Professor, 2015.

Liu, Xiao, Ph.D. (National University of Singapore), B.S.M.E. (Harbin Institute of Technology, China), Assistant Professor, 2017.

Milburn, Ashlea R., Ph.D. (Georgia Institute of Technology), M.S.I.E. (Virginia Polytechnic Institute and State University), B.S.I.E. (University of Arkansas), Associate Professor, 2010.

Needy, Kim LaScola, Ph.D. (Wichita State University), P.E., M.S.I.E. (University of Missouri, Rolla), Assistant Professor, 2014.

Parnell, Gregory S., Ph.D. (Stanford University), M.S. (University of Southern California), M.E.I.S.E. (University of Florida), B.S. (University of New York at Buffalo), Professor of Practice, 2013.

Pierson, Harry A., Ph.D. (The Ohio State University), M.S.E.M., B.S.M.E. (University of Missouri, Rolla), Assistant Professor, 2014.

Pohl, Edward A., Ph.D. (University of Arizona), M.S.S.E. (University of Missouri, Rolla), Assistant Professor, 2014.

Pohl, Letitia, Ph.D. (University of Arkansas), M.S.S.E. (Air Force Institute of Technology), B.S.E.E. (University of Dayton), B.S.E.E. (Boston University), Professor, 2004.

Rainwater, Chase E., Ph.D. (University of Florida), B.S.I.E. (University of Arkansas), Associate Professor, 2009.

Rossetti, Manuel D., Ph.D., P.E., M.S.I.S. (The Ohio State University), B.S.I.E. (University of Cincinnati), Professor, 1999.

Sullivan, Kelly M., Ph.D. (University of Florida), M.S.I.E., B.S.I.E. (University of Arkansas), Associate Professor, 2012.

Zhang, Shengfan, Ph.D., M.I.E. (North Carolina State University), B.M. (Fudan University, Shanghai), Associate Professor, 2011.
Courses

INEG 2001. Industrial Engineering Seminar. 1 Hour.
Overview of the Department of Industrial Engineering: faculty and their backgrounds and interests, staff and the services they provide, facilities, curricular requirements, extracurricular opportunities, post-graduate opportunities. (Typically offered: Fall)

INEG 2103. Introduction to Industrial Engineering. 3 Hours.
Introduction to the technical content of industrial engineering and the use of computing in the solution of traditional industrial engineering problems. Computer tools include spreadsheets, programming, and mathematical analysis software. Corequisite: Lab component. Prerequisite: MATH 2445 or MATH 2514 or MATH 2554. (Typically offered: Fall)

INEG 2214. Computing Methods for Industrial Engineers I. 4 Hours.
Introduction to programming and computing methods within the context of traditional industrial engineering problem solving. Students will be exposed to classic industrial engineering problem scenarios. Basic techniques within object-oriented programming, including designing classes, using objects, creating methods, looping and decision constructs, arrays, and file handling, will be used to facilitate solving these problems. Pre- or Corequisite: MATH 2445 or MATH 2514 or MATH 2554. (Typically offered: Fall and Spring)

INEG 2223. Computing Methods for Industrial Engineers II. 3 Hours.
A continuation of INEG 2214. Review of fundamental computing methods and exposure to advanced use of computing libraries. Developing and implementing algorithms using computing methods to solve illustrative and practical problems of interest to industrial engineers. Students will use existing computing libraries, data structures, and programming interfaces to implement software using problem-based learning. Prerequisite: INEG 2214. (Typically offered: Fall and Spring)

INEG 2313. Applied Probability and Statistics for Engineers I. 3 Hours.
Applications to engineering problems of probability theory, discrete and continuous random variables, descriptive statistics, single-population point and interval estimation, single-population hypothesis testing, goodness-of-fit testing, and contingency table testing. INEG and DTSC students only. Corequisite: Drill component. Prerequisite: MATH 2564 and INEG or DTSC students only. (Typically offered: Fall and Spring)

INEG 2313H. Honors Applied Probability and Statistics for Engineers I. 3 Hours.
Applications to engineering problems of probability theory, discrete and continuous random variables, descriptive statistics, single-population point and interval estimation, single-population hypothesis testing, goodness-of-fit testing, and contingency table testing. Corequisite: Drill component. Prerequisite: MATH 2564. (Typically offered: Fall and Spring)

INEG 2333. Applied Probability and Statistics for Engineers II. 3 Hours.
Applications to engineering problems of two-population point and interval estimation, two-population hypothesis testing, linear regression, correlation, design of experiments, analysis of variance, and nonparametric statistics. Introduction to statistical quality control. Corequisite: Drill component. Prerequisite: INEG 2313. (Typically offered: Fall and Spring)

INEG 2403. Industrial Cost Analysis. 3 Hours.
Use of accounting information for planning and control with emphasis on the engineering viewpoint; introduction to general accounting procedures; principles of cost accounting and other aspects of production costs; budgeting, depreciation, taxes, distribution of profits, securities, sources of corporate capital, interpretation of financial statements, and other related topics. Laboratory required. Corequisite: Lab component. (Typically offered: Spring)

INEG 2413. Engineering Economic Analysis. 3 Hours.
Economic aspects of engineering, including current economic problems and the treatment of estimates when evaluating alternative courses of action. Methods of selection and replacement of equipment and break-even points of operation; desirability of new processes or projects where asset life, rate of return on investment, and first, fixed, differential, marginal, and sunk costs must be considered. Corequisite: Drill component. Prerequisite: MATH 2445 or MATH 2514 or MATH 2554. (Typically offered: Fall and Spring)

INEG 2812H. Honors Industrial Engineering Research Experience I. 2 Hours.
Introduction to the research of the faculty of the Department of Industrial Engineering for the purpose of matching students with an undergraduate research advisor. Development of skills in using electronic resources to conduct background research on individuals and topics in the industrial engineering academic community. Prerequisite: Instructor consent and honors standing. (Typically offered: Spring)

INEG 3313. Engineering Probability and Statistics. 3 Hours.
Applications to engineering problems of data summary and presentation, random variables and probability distributions, point and interval estimation, hypothesis testing, linear regression, and design of experiments. Not for credit toward the Bachelor of Science in Industrial Engineering. Corequisite: Drill component. Prerequisite: MATH 2564. (Typically offered: Fall and Spring)

INEG 3513. Manufacturing Processes. 3 Hours.
This course focuses on the manufacturing processes that impart geometry and properties to engineering materials including casting, metalworking, machining, joining, heat treatment, and polymer processes. Process selection and analysis, design-for-manufacturing principles, cost estimation, and selection of process parameters are covered. Lab component covers communication of manufacturing specifications via engineering drawings. Prerequisite: MEEG 2303. Corequisite: Lab component. (Typically offered: Spring)

INEG 3613. Introduction to Operations Research. 3 Hours.
Introduction to modeling and analysis of deterministic operations design and planning problems using formal optimization algorithms and software. Identification and formulation of appropriate applications, linear programming, sensitivity, network flows/transportation/assignment problems, shortest paths, and integer linear programming. Prerequisite: (INEG 2214 or CSCE 2004 or DASC 1204) and (MATH 2574 or DASC 2594). (Typically offered: Spring)

INEG 3623. Simulation. 3 Hours.
The development and use of discrete-event simulation models for the analysis and design of systems found in manufacturing, distribution, and service contexts. Coverage includes conceptual modeling, model translation to computer form, statistical input models, random number generation and Monte Carlo methods, experimentation and statistical output analysis, and queuing analysis. Includes the use of modern computer simulation languages. Corequisite: Drill component. Prerequisite: INEG 2223 or CSCE 2004 or DASC 1204. Pre- or Corequisite: INEG 2333 or STAT 3003. (Typically offered: Fall)

INEG 3623H. Honors Simulation. 3 Hours.
The development and use of discrete-event simulation models for the analysis and design of systems found in manufacturing, distribution, and service contexts. Coverage includes conceptual modeling, model translation to computer form, statistical input models, random number generation and Monte Carlo methods, experimentation and statistical output analysis, and queuing analysis. Includes the use of modern computer simulation languages. Corequisite: INEG 2333 and drill component. Prerequisite: INEG 2413 and CSCE 2004. (Typically offered: Fall)

This course is equivalent to INEG 3623.
INEG 3714. Work Methods and Ergonomics. 4 Hours.
Ways of designing jobs, machines, operations and work environments so they are compatible with human capacities and limitations. Work methods topics include methods analysis, time studies, work sampling and learning curves. Cognitive and physical capabilities and limitations of humans are addressed through the study of human information processing, motor control theory, anthropometry, biomechanics, work physiology and manual material handling. Design of controls and displays, hand tools and workstations, along with work related musculoskeletal disorders. Laboratory required. Corequisite: Lab component. Prerequisite or Corequisite: INEG 2333. (Typically offered: Fall and Spring)

INEG 3812H. Honors Industrial Engineering Research Experience II. 2 Hours.
Development of an undergraduate research proposal. Introduction to the peer review process. Examination of conference travel, nationally-competitive award, and graduate fellowships. Emphasis on technical communication skills. Prerequisite: INEG 2812H and honors standing. (Typically offered: Fall)

INEG 400VH. Honors Thesis. 1-3 Hour.
For Honors College students majoring in Industrial Engineering only. Prerequisite: Honors college students only and instructor consent. (Typically offered: Fall, Spring and Summer)

INEG 410V. Special Topics in Industrial Engineering. 1-4 Hour.
Consideration of current industrial engineering topics not covered in other courses. Prerequisite: Senior standing. (Typically offered: Irregular) May be repeated for up to 4 hours of degree credit.

INEG 410VH. Honors Special Topics in Industrial Engineering. 1-3 Hour.
Consideration of current industrial engineering topics not covered in other courses. Prerequisite: Senior standing. (Typically offered: Irregular) May be repeated for up to 3 hours of degree credit.

This course is equivalent to INEG 410V.

INEG 411V. Individual Study in Industrial Engineering. 1-3 Hour.
Individual study and research on a topic mutually agreeable to the student and a faculty member. Prerequisite: Instructor consent. (Typically offered: Fall, Spring and Summer)

INEG 411VH. Honors Individual Study in Industrial Engineering. 1-3 Hour.
Individual study and research on a topic mutually agreeable to the student and a faculty member. Prerequisite: Instructor consent and honors candidacy. (Typically offered: Fall, Spring and Summer)

This course is equivalent to INEG 411V.

INEG 4123. Global Engineering and Innovation. 3 Hours.
This course provides engineering students a global perspective for design and innovation. Students explore various design thinking tools and techniques. Students apply engineering design and innovation techniques to create solutions that meet specified markets with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental and economic factors. Students also have the opportunity to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which considers the impact of the engineering solution in the global, economic, environmental, and social contexts. Prerequisite: Senior standing or instructor consent. (Typically offered: Irregular)

INEG 4143. Data Mining. 3 Hours.
The course focuses on the principles, theory, design, and implementation of data mining algorithms for large-scale data. Topics include foundations of data mining; preprocessing; mining frequent patterns, associations and correlations; supervised learning including decision tree induction, naïve Bayesian classification, support vector machine, logistic regression, Bayesian network, and K-nearest neighbor learning; unsupervised learning including K-means clustering, hierarchical clustering, density-based clustering, and grid-based clustering; outlier analysis; graph mining; scalable and distributed data mining. Prerequisite: (INEG 2333 and INEG 2223) or (CSCE 2014 and INEG 3313). (Typically offered: Fall)

INEG 4163. Introduction to Modern Statistical Techniques for Industrial Applications. 3 Hours.
This application-oriented course is driven by real problems arising from industry and focuses on problem solving using both modern and classic statistical methods. For both senior undergraduate and graduate students, the main goal of this course is to provide a comprehensive introduction to those most popular statistical learning methods and tools (such as R and Apache Spark) which are widely used in industry today. Prerequisite: INEG 2333. (Typically offered: Spring)

INEG 4223. Occupational Safety and Health Standards. 3 Hours.
Survey of existing and proposed standards by examining fundamental physical, economic, and legal bases. Performance vs. specific standards. Enforceability and data collection. National consensus and promulgation process. Includes a computer-based design project. Prerequisite: INEG 2313. (Typically offered: Irregular)

INEG 4253. Leadership Principles and Practices. 3 Hours.
The course is designed to expose students to multiple approaches to leadership in a wide variety of settings. Leadership styles, the knowledge areas and competencies expected of today’s leaders, the challenges leaders face, the historical and philosophical foundations of leadership, the relationships among leadership theory, leadership practice, and the moral-ethical aspects of leadership are among the topics covered in the course. A number of respected regional, national, and international leaders share ‘lessons learned’ in their leadership journeys. Plus, a number of highly regarded leadership books and case studies on leadership are read and discussed. Students may not receive credit for INEG 4253 and INEG 5253/OMGT 5253. Prerequisite: Senior standing. (Typically offered: Fall)

INEG 4253H. Honors Leadership Principles and Practices. 3 Hours.
The course is designed to expose students to multiple approaches to leadership in a wide variety of settings. Leadership styles, the knowledge areas and competencies expected of today’s leaders, the challenges leaders face, the historical and philosophical foundations of leadership, the relationships among leadership theory, leadership practice, and the moral-ethical aspects of leadership are among the topics covered in the course. A number of respected regional, national, and international leaders share ‘lessons learned’ in their leadership journeys. Plus, a number of highly regarded leadership books and case studies on leadership are read and discussed. Students may not receive credit for INEG 4253 and INEG 5253/OMGT 5253. Prerequisite: Honors standing and instructor consent. (Typically offered: Fall)

This course is equivalent to INEG 4253.

INEG 4232. Quality Engineering and Management. 3 Hours.
Provides the student with complete coverage of the functional area of ‘Quality Assurance’ ranging from the need for such a function, how it works, techniques utilized, and managerial approaches for insuring its effectiveness. Prerequisite: INEG 2333. (Typically offered: Irregular)

INEG 4343. Cognitive Ergonomics. 3 Hours.
Studies of human cognition in work settings in order to enhance performance of cognitive tasks through an understanding of cognitive processes (e.g., attention, perception errors, decision making, workload) required of operators in modern industries. Emphasis lies on how to (re)design human-machine interfaces and cognitive artifacts so that human well-being and system performance are optimized in work environments. Prerequisite: INEG 2223 or CSCE 2004. (Typically offered: Irregular)

INEG 4423. Advanced Engineering Economy. 3 Hours.
Preparation of feasibility studies, including cost estimation, risk and uncertainty, sensitivity analysis and decision making. Effects of taxes, depreciation and financing costs on cash flows. Prerequisite: INEG 2313 and INEG 2413. (Typically offered: Irregular)
INEG 4423H. Honors Advanced Engineering Economy. 3 Hours.
Preparation of feasibility studies, including cost estimation, risk and uncertainty, sensitivity analysis and decision making. Effects of taxes, depreciation and financing costs on cash flows. Prerequisite: INEG 2313 and INEG 2413. (Typically offered: Irregular)
This course is equivalent to INEG 4423.

INEG 4433. Systems Engineering and Management. 3 Hours.
Overview of the fundamental concepts underlying the management of engineering. Reviews the engineering decision process within the life cycle. Examines implementation of basic management functions in technical organizations and development of strategy tools within a complex organization. Prerequisite: INEG 2413. (Typically offered: Fall)

INEG 4433H. Honors Systems Engineering and Management. 3 Hours.
Overview of the fundamental concepts underlying the management of engineering. Reviews the engineering decision process within the life cycle. Examines implementation of basic management functions in technical organizations and development of strategy tools within a complex organization. Prerequisite: INEG 2413. (Typically offered: Fall)
This course is equivalent to INEG 4433.

INEG 4443. Project Management. 3 Hours.
Analysis of the strategic level of project management including planning, organizing, and staffing for successful project execution. Professional creativity, motivation, leadership, and ethics are also explored. At the tactical level, project selection, control, and systems management are analyzed. Systems development and decision support tools for project management are studied. Prerequisite: Senior standing. (Typically offered: Irregular)

INEG 4443H. Honors Project Management. 3 Hours.
Analysis of the strategic level of project management including planning, organizing, and staffing for successful project execution. Professional creativity, motivation, leadership, and ethics are also explored. At the tactical level, project selection, control, and systems management are analyzed. Systems development and decision support tools for project management are studied. Prerequisite: Senior standing. (Typically offered: Irregular)
This course is equivalent to INEG 4443.

INEG 4453. Productivity Improvement. 3 Hours.
Analysis of common productivity problems. Development of skills required to diagnose problems; measure productivity; develop improvement strategies; and provide for the implementation and maintenance of productivity measurement and improvement systems. Prerequisite: Senior standing. (Typically offered: Irregular)

INEG 4533. Application of Machine Vision. 3 Hours.
Automated machine vision applied to assembly and inspection tasks traditionally performed by human operators; development of application by acquiring image, processing image data, analyzing image and transmitting results; application analysis, selection and economics. Laboratory required. Corequisite: Lab component. Prerequisite: Senior standing. (Typically offered: Spring)

INEG 4543. Facility Logistics. 3 Hours.
The design and analysis of efficient logistics systems at the facility level, with an emphasis on distribution facilities. Unit load, break bulk, crossdock and order fulfillment centers and their component systems and software. Automated and manual systems. Corequisite: Lab component. Prerequisite: INEG 2413 and INEG 3613. (Typically offered: Fall)

INEG 4553. Production Planning and Control. 3 Hours.
Strategy and competition, forecasting, aggregate planning, inventory control subject to known demand, inventory control subject to uncertain demand, supply chain management, push and pull production control systems, and operations scheduling. Pre or Corequisite: INEG 3613. Prerequisite: INEG 2333 or STAT 3003. (Typically offered: Fall)

INEG 4563. Industrial Robotics. 3 Hours.
An interdisciplinary treatment of: industrial robotics; manipulator anatomy, control, and programming; end-of arm tooling; sensors & sensing; system integration and safety; future trends. Significant out-of-class programming assignments to solve common industrial automation problems. Corequisite: Lab component. Prerequisite: INEG 2214 or CSCE 2004 and (MATH 2445 or MATH 2514 or MATH 2554). (Typically offered: Fall)

INEG 4593. Manufacturing Systems. 3 Hours.
This course is designed to highlight the major topics in manufacturing systems. Different manufacturing models and metrics are emphasized. This course also introduces classification, general terminology, technical aspects, economics, and analysis of manufacturing systems. Corequisite: Lab component. Prerequisite: INEG 3513 or graduate standing. (Typically offered: Irregular)

INEG 4633. Transportation Logistics. 3 Hours.
Quantitative aspects of transportation and logistics involving analysis and optimization. Topics include: facility location analysis, network design, network flow and transportation modeling, vehicle routing, fleet sizing, driver assignment, and supply chain issues (logistics demand, role of inventory in the network, role of technology, etc.). Prerequisite: INEG 2333 and INEG 3613. (Typically offered: Irregular)

INEG 4683. Decision Support in Industrial Engineering. 3 Hours.
Reinforcing important computer programming methods using industrial engineering-based applications. Students will utilize Microsoft Excel and Visual Basic for Applications to develop custom solutions to challenging industrial engineering problems. Emphasis on computational proficiency and computing productivity in a spreadsheet-based setting. Prerequisite: INEG 2214 or CSCE 2004 and INEG 2313. (Typically offered: Fall)

INEG 4733. Industrial Ergonomics. 3 Hours.
Gives background and experience in measurement and evaluation of human performance as it pertains to the working environment. The physical, physiological and psychological capabilities of the tasks they are to perform. Laboratory projects required. Prerequisite: INEG 2333 and INEG 3714. (Typically offered: Irregular)

INEG 4812H. Honors Industrial Engineering Research Experience III. 2 Hours.
Completion of an undergraduate research thesis. Introduction to the identification of outlets for dissemination of industrial engineering research. Introduction to the process of identifying opportunities for future extensions of completed research. Prerequisite: INEG 3812H and honors standing. (Typically offered: Fall)

INEG 4833. Introduction to Database Concepts for Industrial Engineers. 3 Hours.
An introduction to the basic principles of database modeling and technologies for industrial engineers. Coverage includes analyzing user requirements, representing data using conceptual modeling techniques (e.g. UML, ERD), converting conceptual models to relational implementations via database design methodologies, extracting data via structured query language processing, and understanding the role of database technology in industrial engineering application areas such as inventory systems, manufacturing control, etc. The application of a desktop database application such as Access will be emphasized. Prerequisite: INEG 2223 or CSCE 2004. (Typically offered: Irregular)

INEG 4911. Industrial Engineering Capstone Experience I. 1 Hour.
Develop a written and oral proposal for a comprehensive project for an industrial sponsor. Conduct background research, data collection, and preliminary analysis using industrial engineering tools; define objectives, performance measures, and deliverables; identify and schedule required tasks. INEG students only. Prerequisite: INEG major. Pre- or Corequisite: INEG 2001, INEG 3613, INEG 3623, INEG 3714, INEG 4433, and INEG 4553. (Typically offered: Fall)
INEG 4923. Industrial Engineering Capstone Experience II. 3 Hours.
Develop a written and oral report for a comprehensive project for an industrial sponsor. Complete identified tasks and measure success in achieving defined objectives using industrial engineering tools; create and document deliverables. Students must have successfully completed INEG 4911 in the immediately prior semester. Two hours lecture, One, three hour lab. Corequisite: Lab component. Pre- or Corequisite: INEG 3513. Prerequisite: INEG 3613, INEG 3623, and INEG 4911. (Typically offered: Spring)