Biological Sciences (BISC)

David S. McNabb
Department Chair
601 Science-Engineering Building
479-575-3787
Email: dmcnabb@uark.edu

Michelle Evans-White
Graduate Coordinator
623 Science-Engineering Building
479-575-4706
Email: mevanswh@uark.edu

Department of Biological Sciences Website (http://fulbright.uark.edu/departments/biology/)

Degrees Conferred:
M.S., Ph.D. in Biology (BIOL)

Program Description: The graduate programs in Biological Sciences offer opportunity for advanced study and research to students who desire a comprehensive view of biological sciences. Accomplishment is judged by competence and a developing sense of responsibility for the advancement of knowledge rather than the fulfillment of routine requirements. The faculty requires of all candidates for advanced degrees a period of study in residence, advanced competence in the chosen area of expertise, satisfactory introduction to allied subjects, the ability to communicate at a scholarly level, and a satisfactory performance in examinations.

Primary Areas of Faculty Research: Cell and molecular biology (biotechnology, cellular physiology, functional genomics, gene regulation, immunology, developmental biology, molecular genetics, pathogenic microbiology); ecology and evolutionary biology (animal behavior, aquatic ecology, animal and plant physiology, conservation biology, community ecology, exobiology, fisheries biology, limnology, molecular systematics, mycology, physiological ecology, plant morphology, population and quantitative genetics, taxonomy, vertebrate biology — herpetology, ichthyology, mammalogy, ornithology — and wildlife management).

M.S. in Biology
Admission to Degree Program: Applicants who wish to study for advanced degrees are expected to present a minimum of 18 hours of biological science. These normally will include training in the three areas of the Biology Subject test of the Graduate Record Examinations: a) cellular and molecular biology, b) organism biology, and c) ecology, evolution, and population biology. Applicants lacking experience in any of the above areas will be expected to broaden their biological training and may be assigned specific course work to fulfill this requirement. Students lacking a total of 18 hours of biological sciences may be admitted on a conditional basis and are not eligible for assistantships. All students applying for admission to the graduate program must provide scores on the verbal, quantitative, and analytical writing sections of the Graduate Record Examinations. Those scores, along with transcripts and three letters of recommendation, will be used in evaluating applications of students applying for assistantships.

All students must have a major professor to enter the graduate program in biological sciences. Ultimately each candidate will have a committee composed of members of the graduate faculty and the student's major professor. Students must also fulfill the Graduate School's residency requirements, which are stated elsewhere in this catalog.

All students are required to earn credit in two graduate seminars. Additional seminar requirements may be specified by the major professor in conjunction with the graduate committee. Students are required to present a research seminar prior to the oral thesis or dissertation defense.

Requirements for the Master's Degree: The Master of Science degree requires 30 semester hours of graduate credit specified by the department to include at least 24 semester hours of course credit and thesis research. Any student who receives a grade of “D” or “F” in any graduate-level course will be subject to dismissal following review by the Graduate Studies Committee. Master of Science students are required to enroll in BIOL 600V for 6 hours of credit and to submit a scholarly thesis based on field and/or laboratory research. A specific coursework program will be selected under the guidance of the student’s major professor and graduate committee. An oral comprehensive examination is required of all candidates, including a defense of the thesis, which will follow their research seminar.

Students should also be aware of Graduate School requirements with regard to master's degrees (http://catalog.uark.edu/graduatenetcatalog/degreqquirements/#mastersdegressetext).

Ph.D. in Biology
Specific Requirements for the Doctor of Philosophy Degree: There are no formal course requirements for doctoral students, except that all graduate students in biology are required to earn credit in two graduate seminars. However, students complete a minimum of 72 graduate semester hours if entering the Ph.D. program without a master’s degree, or 42 graduate semester hours beyond the master’s degree. A minimum of 18 hours must be taken in dissertation credit; these will count in the minimums mentioned in the previous sentence. Any student who receives a grade of “D” or “F” in any graduate-level course will be subject to dismissal following review by the Graduate Studies Committee. Any student receiving more than two grades of “C” in courses of two or more credit hours is no longer eligible for the Ph.D. degree, but may elect to complete an M.S. degree in the program. The Ph.D. is granted not only for fulfillment of technical requirements, but also for development and possession of a critical and creative ability in science and fruitful expression of imagination. Evidence of this is given in the dissertation that the candidate prepares, which constitutes an original research contribution to the fields of the biological sciences.

The Graduate School requires two examinations of all students pursuing the Doctor of Philosophy degree. These examinations are designed to assist students in developing the ability to communicate at a scholarly level and to show they have attained intellectual mastery of knowledge relating to the biological sciences. The first examination, the Candidacy Examination, contains questions related to the student’s field of interest and other areas as the doctoral committee may specify. This examination is given by the doctoral advisory committee in two parts, written and oral. The written and oral portions of the candidacy examination must be completed within the first three calendar years in the program. Satisfactory performance on this examination will be indicated by either pass or fail as determined by the doctoral committee. In the event of failure, the examination may be repeated at the discretion of the doctoral committee. In no case may the candidacy examination be taken more than twice. Notification to the Graduate School of failure to pass the Candidacy Examination means that the student is dismissed from the Ph.D. program, and the student is not eligible for readmission into the
Biology program to pursue the Ph.D. degree. The second examination, the oral Final Examination, preceded by a research seminar, is primarily concerned with the candidate’s dissertation and is taken at the end of the candidate’s program.

Students should also be aware of Graduate School requirements with regard to doctoral degrees (http://catalog.uark.edu/graduatecatalog/degreerequirements/#phdandedddegreeertext).

Graduate Faculty

Alrubaye, Adnan A., Ph.D., M.Ed. (University of Arkansas), M.Sc. (University of Baghdad), Research Assistant Professor, 2013.

Alverson, Andrew James, Ph.D. (University of Texas at Austin), M.S. (Iowa State University), B.S. (Grand Valley State University), Associate Professor, 2012.

Bailey, Tameka A., Ph.D. (University of Arkansas), B.S. (University of Arkansas-Pine Bluff), Research Assistant Professor, 2017.

Beaulieu, Jeremy M., Ph.D. (Yale University), M.S., B.S. (California Polytechnic State University), Assistant Professor, 2016.

Beaupre, Steven J., Ph.D. (University of Pennsylvania), M.S., B.S. (University of Wisconsin), Professor, 1995.

Catanzaro, Donald G., Ph.D. (University of Arkansas), A.B. (University of California, Los Angeles), Research Assistant Professor, 2014.

Ceballos, Ruben M., Ph.D. (University of Montana), M.A. (University of Alabama-Birmingham), B.S.(University of Alabama-Huntsville), Assistant Professor, 2016.

Coleman, James S., Ph.D., M.S., M.Phil (Yale University), B.S. (University of Maine), Professor, 2017.

Douglas, Marlis R., Ph.D., M.S., B.S. (University of Zurich), Professor, 2012.

Douglas, Michael Edward, Ph.D. (University of Georgia), M.S., B.S. (University of Louisville), Professor, 2011.

Du, Yuchun, Ph.D. (Kagoshima University, Japan), B.S. (Shaanxi University of Technology, China), Associate Professor, 2007.

DuRant, Sarah Elizabeth, Ph.D. (Virginia Polytechnic Institute and State University), B.S. (University of South Carolina), Assistant Professor, 2017.

Durdik, Jeannine M., Ph.D. (Johns Hopkins University), B.S. (Purdue University), Professor, 1994.

Etges, William J., Ph.D. (University of Rochester), M.S. (University of Georgia), B.S. (North Carolina State University), Professor, 1987.

Evans, Timothy A., Ph.D. (Indiana University), B.S. (Slippery Rock University), Associate Professor, 2013.

Evans-White, Michelle Allayne, Ph.D. (University of Notre Dame), M.S., B.S. (Kansas State University), Professor, 2008.

Forbes, Kristian M., Ph.D. (University of Jyväskylä), M.P.H. (Latrobe University), B.Sc. (Latrobe University), Assistant Professor, 2018.

Henry, Ralph Leroy, Ph.D., M.S. (Kansas State University), B.S.E. (University of Kansas), Distinguished Professor, 1996.

Ivey, Mack, Ph.D., B.S. (University of Georgia), Associate Professor, 1992.

Iyer, Shilpa, Ph.D. (University of Georgia), M.Sc., B.Sc. (University of Pune, India), Assistant Professor, 2016.

Kral, Timothy Alan, Ph.D. (University of Florida), B.S. (John Carroll University), Professor, 1981.

Lehmann, Michael Herbert, Ph.D., Diploma in Biology (Philips University of Marburg, Germany), Professor, 2002.

Lessner, Daniel J., Ph.D. (University of Iowa), B.S. (University of Wisconsin-Stevens Point), Associate Professor, 2008.

Lewis, Jeffrey A., Ph.D. (University of Wisconsin-Madison), B.S. (University of California-Santa Barbara), Assistant Professor, 2013.

Magoulick, Daniel D., Ph.D. (University of Pittsburgh), M.S. (Eastern Michigan University), B.S. (Michigan State University), Research Professor, 2000.

McAbb, David S., Ph.D. (Louisiana State University Health Sciences Center), B.S. (University of Texas at Arlington), Associate Professor, 2000.

Naithani, Kusum, Ph.D. (University of Wyoming), M.Sc. (G.B. Pant University of Agriculture and Technology-India), B.Sc. (University of Lucknow-India), Assistant Professor, 2014.

Nakanishi, Nagayasu, Ph.D. (University of California, Los Angeles), B.S. (University of California, San Diego), Assistant Professor, 2017.

Pinto, Ines, Ph.D. (Louisiana State University Health Sciences Center), M.S., B.S. (University of Chile), Associate Professor, 2000.

Rhoads, Douglas Duane, Ph.D. (Kansas State University), M.A., B.A. (Wichita State University), University Professor, 1990.

Siepelski, Adam M., Ph.D. (University of Wyoming-Laramie), M.S. (New Mexico State University), B.S. (Pennsylvania State University-University Park), Associate Professor, 2015.

Spiegel, Frederick W., Ph.D. (University of North Carolina at Chapel Hill), B.A. (Drew University), Distinguished Professor, 1982.

Stephenson, Steven Lee, Ph.D., M.S. (Virginia Polytechnic Institute and State University), B.S. (Lynchburg College), Research Professor, 2003.

Tipsmark, Christian K., Ph.D., M.S. (University of Southern Denmark), Associate Professor, 2010.

Walker, James M., Ph.D. (University of Colorado-Boulder), M.S., B.S. (Louisiana Polytechnic Institute), Professor, 1965.

Westerman, Erica L., Ph.D. (Yale University), M.Sc. (University of New Hampshire), B.S. (Yale University), Assistant Professor, 2016.

Willson, John David, Ph.D. (University of Georgia), B.S. (Davidson College), Associate Professor, 2012.

Courses

BIOL 5001. Seminar in Biology. 1 Hour.

Discussion of selected topics and review of current literature in any area of the biological sciences. (Typically offered: Fall and Spring) May be repeated for up to 2 hours of degree credit.

This course is cross-listed with CEMB 5911.

BIOL 5003L. Laboratory in Prokaryote Biology. 3 Hours.

Laboratory techniques in prokaryote culture, identification, physiology, metabolism, and genetics. Laboratory 6 hours per week. Prerequisite: BIOL 3123. (Typically offered: Fall and Spring)

BIOL 5024. Insect Diversity and Taxonomy. 4 Hours.

(Formerly BIOL 4024.) Principles and practices of insect classification and identification with emphasis on adult insects. 2.5 hours lecture, 4 hours lab. Previous knowledge of basic entomology is necessary. Graduate degree credit will not be given for both BIOL 4024 and BIOL 5024. Prerequisite: Instructor consent. Corequisite: Lab component. (Typically offered: Fall)

This course is cross-listed with ENTO 5024.

BIOL 5034. Wildlife Management Techniques. 4 Hours.

(Formerly BIOL 4734.) To familiarize students with techniques used in the management of wildlife populations. Students will be exposed to field methods, approaches to data analysis, experimental design, and how to write a scientific paper. Management applications will be emphasized. Lecture 3 hours, laboratory 3 hours per week. Graduate degree credit will not be given for both BIOL 4734 and BIOL 5034. Corequisite: Lab component. Prerequisite: BIOL 3863. (Typically offered: Irregular)
BIOL 5053. Insect Ecology. 3 Hours.
(Formerly BIOL 4053.) Teaches important ecological concepts through study of
dynamic relationships among insects and their environment. Introduces literature
of insect ecology, and interpretation and critique of ecological research. Previous
knowledge of basic entomology and/or ecology will be assumed. 2 hours lecture/2
hours lab. Graduate degree credit will not be given for both BIOL 4053 and
BIOL 5053. Prerequisite: Instructor consent. Corequisite: Lab component. (Typically
offered: Fall Even Years)
This course is cross-listed with ENTO 5053.

BIOL 5104. Taxonomy of Flowering Plants. 4 Hours.
(Formerly BIOL 4104.) Identifying, naming, and classifying of wildflowers, weeds,
trees, and other flowering plants. Emphasis is on the practical aspects of plant
identification. Lecture 3 hours, laboratory 3 hours per week. Graduate degree credit
will not be given for both BIOL 4104 and BIOL 5104. Corequisite: Lab component.
Prerequisite: BIOL 1613 and BIOL 1611L and BIOL 2323 and BIOL 3023. (Typically
offered: Spring)

BIOL 5113. Insect Behavior and Chemical Ecology. 3 Hours.
Basic concepts in insect senses and patterns of behavioral responses to various
environmental stimuli. Previous knowledge of basic entomology is helpful, but not
required. Prerequisite: Instructor consent. Corequisite: Lab component. (Typically
offered: Spring Even Years)
This course is cross-listed with ENTO 5113.

BIOL 5122. Food Microbiology. 2 Hours.
(Formerly BIOL 4122.) The study of food microbiology including classification/
taxonomy, contamination, preservation and spoilage of different kinds of foods,
pathogenic microorganisms, food poisoning, sanitation, control and inspection and
beneficial uses of microorganisms. Graduate degree credit will not be given for both
BIOL 4122 and BIOL 5122. Prerequisite: BIOL 2013 and BIOL 2011L or BIOL 2533.
(Typically offered: Fall)
This course is cross-listed with FDSC 5122.

BIOL 5124. Dendrology. 4 Hours.
(Formerly BIOL 4114.) Morphology, classification, geographic distribution, and
ecology of woody plants. Lecture 3 hours, laboratory 3 hours per week, and
fieldtrips. Graduate degree credit will not be given for both BIOL 4114 and
BIOL 5124. Prerequisite: BIOL 3863. (Typically offered: Fall)

BIOL 5133. Insect Molecular Genetics. 3 Hours.
A hands on course in insect molecular genetic techniques including molecular
diagnostics and population genetics. Students will learn how to apply advanced
molecular genetic methodologies and Internet database resources to insects that
they are using for their graduate research. (Typically offered: Spring Even Years)
This course is cross-listed with ENTO 5133.

BIOL 5153. Practical Programming for Biologists. 3 Hours.
Hands-on instruction in the fundamentals of biological computing. Students learn
how to set up a Unix work station, work from the command line, install software,
buid databases, and program in Python, a popular scripting language for biological
applications. Most examples focus on the analysis of genomic data. (Typically
offered: Spring)

BIOL 5163. Dynamic Models in Biology. 3 Hours.
(Formerly BIOL 4163.) Mathematical and computational techniques for developing,
executing, and analyzing dynamic models arising in the biological sciences. Both
discrete and continuous time models are studied. Applications include population
dynamics, cellular dynamics, and the spread of infectious diseases. Graduate
degree credit will not be given for both BIOL 4163 and BIOL 5163. Prerequisite:
MATH 2554. (Typically offered: Irregular)

BIOL 5174. Conservation Genetics. 4 Hours.
Covers concepts of biodiversity identification and illustrates how genetic data are
generated and analyzed to conserve and restore biological diversity. Corequisite:
Lab component. Prerequisite: BIOL 3023, BIOL 3863 and STAT 2823 (or equivalent)
and graduate standing. (Typically offered: Spring)

BIOL 5213. Biological Regulation and Subcellular Communication. 3 Hours.
Combines lectures, review of primary literature, student presentations, and small
group discussions to explore a diversity of topics related to mechanisms of biological
regulation and subcellular communication. Prerequisite: Graduate standing.
(Typically offered: Irregular)

BIOL 5223. Bacterial Lifestyles. 3 Hours.
The course will introduce students to bacteria as prokaryotic organisms, different
from eukaryotes such as plants and animals. Model microbial systems will be
studied in more detail to identify unique strategies that bacteria employ to thrive in
their respective environment, whether they are causing diseases or establishing
beneficial interactions with animal or plants or coexisting with other microorganisms
in diverse ecological environments. The course will also cover special adaptations
that bacteria have evolved to adapt to harsh environments and how these
adaptations can be harnessed to control pollution. Prerequisite: (BIOL 2013 and
BIOL 2011L) or BIOL 3123. (Typically offered: Spring Odd Years)
This course is cross-listed with PLPA 5123.

BIOL 5233. Genomics and Bioinformatics. 3 Hours.
Principles of molecular and computational analyses of genomes. Prerequisite:
BIOL 2533 or BIOL 2323. (Typically offered: Spring)

BIOL 5241L Ichthyology Laboratory. 1 Hour.
Practical application of fish identification based on anatomy, fish sampling methods,
and curing of fish specimens. Laboratory component of BIOL 5243. Corequisite:
BIOL 5243. (Typically offered: Spring Odd Years)

BIOL 5243. Ichthyology. 3 Hours.
Comprehensive overview of the diversity of fishes. Covers anatomy, physiology,
evolution, taxonomy, ecology, behavior, zoogeography and conservation of
marine and freshwater fishes. Lecture 3 hours per week. Corequisite: BIOL 5241L.
(Typically offered: Spring Odd Years)

BIOL 5254. Comparative Physiology. 4 Hours.
(Formerly BIOL 4234.) Comparison of fundamental physiological mechanisms in
various animal groups. Adaptations to environmental factors at both the organismal
and cellular levels are emphasized. Lecture 3 hours, laboratory 3 hours per week.
Graduate degree credit will not be given for both BIOL 4234 and BIOL 5254.
Prerequisite: BIOL 2533 and CHEM 3613 and (CHEM 3611L or CHEM 3612M).
(Ordinarily offered: Fall)

BIOL 5263. Cell Physiology. 3 Hours.
In-depth molecular coverage of cellular processes involved in growth, metabolism,
transport, excitation, signaling and motility, with emphasis on function and regulation
in eukaryotes, primarily animals. Prerequisite: BIOL 2323, BIOL 2533, BIOL 2531L,
CHEM 3813, and PHYS 2033. (Typically offered: Fall)

BIOL 5273. Endocrinology. 3 Hours.
In endocrinology we study hormonal integration of living processes at all levels from
molecule to organism. We will work with the mechanisms of hormone action, the
decorin control axes and hormones physiological role. The course will include
paper discussions and student presentations on topics of special interest. (Typically
offered: Spring)

BIOL 5303. Plant Physiology. 3 Hours.
Introductory course in plant physiology focusing on cellular processes that support
the metabolic, developmental, and reproductive needs of plants. Prerequisite: 3
hours of cell biology or biochemistry. (Typically offered: Fall)
BIOL 5313. Molecular Cell Biology. 3 Hours.
In-depth molecular coverage of transcription, cell cycle, translation, and protein processing in eukaryotes and prokaryotes. Prerequisite: BIOL 2533 and BIOL 2323 and CHEM 3603 and CHEM 3601L and CHEM 3613 and CHEM 3611L. (Typically offered: Spring)

BIOL 5323. Comparative Neurobiology. 3 Hours.
Exploration of modern research approaches to understanding the development and function of animal nervous systems, with emphasis on molecular and cellular approaches in non-human animal models commonly used in biomedical research. Format combines lectures, group discussions, and student presentations using examples from the primary neurobiology literature. Prerequisite: Graduate standing. (Typically offered: Irregular)

BIOL 5343. Advanced Immunology. 3 Hours.
Aspects of innate, cell-mediated, and humoral immunity in mammalian and avian species. Molecular mechanisms underlying the function of the immune system are emphasized. A course in Basic Immunology prior to enrollment in Advanced Immunology is recommended but not required. Lecture 3 hours per week. (Typically offered: Fall Odd Years)

BIOL 5352L. Immunology in the Laboratory. 2 Hours.
Laboratory course on immune-diagnostic laboratory techniques and uses of antibodies as a research tool. Included are cell isolation and characterization procedures, immunochemistry, flow cytometry, ELISA and cell culture assay systems. Laboratory 6 hours per week. Prerequisite: BIOL 5343 or BIOL 5343L. (Typically offered: Spring)
This course is cross-listed with POSC 5343.

BIOL 5353. Ecological Genetics/genomics. 3 Hours.
Analysis of the genetics of natural and laboratory populations with emphasis on the ecological bases of evolutionary change. Prerequisite: BIOL 2323 and BIOL 2321L, BIOL 3023 and MATH 2554 and STAT 2823 or equivalents. (Typically offered: Fall Odd Years)

BIOL 5404. Comparative Botany. 4 Hours.
A comparative approach to organisms classically considered to be plants with emphasis on morphology, life history, development, and phylogeny. Three hours lecture, 4 hours lab per week. Corequisite: Lab component. Prerequisite: Graduate standing. (Typically offered: Fall Odd Years)

BIOL 5414. Mycology. 4 Hours.
Form and function of the fungi. Lecture 2 hours, laboratory 4 hours per week. Corequisite: Laboratory component. (Typically offered: Irregular)

BIOL 5433. Principles of Evolution. 3 Hours.
Advanced survey of the mechanisms of evolutionary change with special emphasis on advances since the Modern Synthesis. Historical, theoretical, and population genetics approaches are discussed. Recommended: BIOL 3023 and BIOL 2321L and BIOL 3861L. Prerequisite: BIOL 2323 and BIOL 3863. (Typically offered: Fall Even Years)

BIOL 5463. Physiological Ecology. 3 Hours.
Interactions between environment, physiology, and properties of individuals and populations on both evolutionary and ecological scales. Prerequisite: BIOL 3863 and BIOL 4234. (Typically offered: Spring Odd Years)

BIOL 5511L. Population Ecology Laboratory. 1 Hour.
Demonstration of the models and concepts from BIOL 5513. Pre- or Corequisite: BIOL 5513. (Typically offered: Fall Even Years)

BIOL 5513. Population Ecology. 3 Hours.
Survey of theoretical and applied aspects of populations processes stressing models of growth, interspecific interactions, and adaptation to physical and biotic environments. Corequisite: BIOL 5511L. Prerequisite: BIOL 3863. (Typically offered: Fall Even Years)

BIOL 5523. Plant Ecology. 3 Hours.
To develop understanding of important ecological concepts through study of dynamics relationships among plants and their environment. To become familiar with the literature of plant ecology, and interpretation and critique of ecological research. Prerequisite: BIOL 3863. (Typically offered: Spring Even Years)

BIOL 5524. Developmental Biology with Laboratory. 4 Hours.
An analysis of the concepts and mechanisms of development emphasizing the experimental approach. Students may not receive degree credit for both BIOL 5543 Developmental Biology and BIOL 5524 Developmental Biology with Laboratory. Corequisite: Lab component. (Typically offered: Fall)

BIOL 5534. Biochemical Genetics. 4 Hours.
Lectures and laboratories based on modern molecular genetic techniques for analyses of eukaryotes and manipulation of prokaryotes. A hands-on course in recombinant DNA techniques: laboratory practices in gene identification, cloning, and characterization. Lecture 2 hours, laboratory 6 hours per week. Corequisite: Lab component. Prerequisite: BIOL 2323 (or equivalent) and CHEM 3813 (or equivalent). (Typically offered: Spring)

BIOL 5543. Developmental Biology. 3 Hours.
An analysis of the principles and mechanisms of development emphasizing the embryonic and postembryonic development of animals. Degree credit will not be allowed for both BIOL 5543 and BIOL 5524. (Typically offered: Irregular)

BIOL 5553. Astrobiology. 3 Hours.
Discusses the scientific basis for the possible existence of extraterrestrial life. Includes the origin and evolution of life on Earth, possibility of life elsewhere in the solar system (including Mars), and the possibility of life on planets around other stars. Prerequisite: Instructor consent. (Typically offered: Irregular)
This course is cross-listed with SPAC 5553.

BIOL 5563. Cancer Biology. 3 Hours.
An introduction to the fundamentals of cancer biology. Prerequisite: BIOL 2533. (Typically offered: Fall)

BIOL 5613. Primate Adaptation and Evolution. 3 Hours.
(Formerly BIOL 4613.) Introduction to the biology of the order Primates. This course considers the comparative anatomy, behavioral ecology and paleontology of our nearest living relatives. Graduate degree credit will not be given for both BIOL 4613 and BIOL 5613. Prerequisite: BIOL 3023 or ANTH 1013. (Typically offered: Spring)
This course is cross-listed with ANTH 5623.

BIOL 5634. Wetlands Ecology and Management. 4 Hours.
To familiarize students with the ecology and management of wetlands. Students will be exposed to the characteristics of wetlands, the environmental factors that produce wetland types, and the management techniques used to meet desired wetland goals. Primary lecture topics will include: wetland definition, wetlands of the world, wetland status, trends, laws, wetland hydrology, wetland soils, wetland plants, wetland plant adaptations, wetland ecosystem development, and wetland management. Lecture 2 hours, Laboratory 3 hours per week. Prerequisite: BIOL 3863. (Typically offered: Irregular)

BIOL 5643. Eukaryote Phylogeny. 3 Hours.
Molecular analysis of the eukaryotic tree of life, phylogenetic tree reconstruction, and eukaryote diversity and evolutionary relationships. (Typically offered: Spring Odd Years)

BIOL 5693. Forest Ecology. 3 Hours.
(Formerly BIOL 4693.) Introduction to the various biological, ecological and historical aspects of forest communities, with particular emphasis on the forests of the central and southeastern United States. Graduate degree credit will not be given for both BIOL 4693 and BIOL 5693. Prerequisite: BIOL 3863. (Typically offered: Irregular)

BIOL 5703. Mechanisms of Pathogenesis. 3 Hours.
A survey of events causing human disease at the molecular, cellular and genetic levels. Seeks to develop an appreciation that both the tricks pathogens use and the body's own defenses contribute to pathology. (Typically offered: Fall)
BIOL 5711L. Basic Immunology Laboratory. 1 Hour.
(Formerly BIOL 4711L) Basic immunology laboratory. Graduate degree credit will not be given for both BIOL 4711L and BIOL 5711L. Corequisite: BIOL 5713. (Typically offered: Spring)

BIOL 5713. Basic Immunology. 3 Hours.
A general overview of Immunology with emphasis on the underlying cellular, molecular and genetic events controlling immune reactions. Reading of the primary literature on disease states involving the immune system. (Typically offered: Spring)

BIOL 5723. Fish Biology. 3 Hours.
Morphology, classification, life histories, population dynamics, and natural history of fishes and fish-like vertebrates. Lecture 2 hours, laboratory 3 hours per week. Corequisite: Lab component. Prerequisite: 12 hours of biological sciences. (Typically offered: Spring Odd Years)

BIOL 5734. Protistology. 4 Hours.
The biology of eukaryotes other than animals, land plants, and fungi with emphasis on morphology and modern approaches to phylegenetic systematics. Three hours lecture, four hours lab/week. Involves writing term papers. Corequisite: Lab component. (Typically offered: Spring Even Years)

BIOL 5737. Mammalian Evolution and Osteology. 3 Hours.
Focuses on describing the evolutionary history of mammals, a group of vertebrates on which biologists place a great deal of emphasis. Emphasis is on the evolutionary history of mammals through both gross and microscopic morphology. Reading of the primary literature. Corequisite: Lab component. Prerequisite: 12 hours of biological sciences. (Typically offered: Spring)

BIOL 5843. Conservation Biology. 3 Hours.
The study of direct and indirect factors by which biodiversity is impacted by human activity. It is a synthetic field of study that incorporates principles of ecology, biogeography, population genetics, economics, sociology, anthropology, philosophy, geology, and geography. Prerequisite: BIOL 3863. (Typically offered: Irregular)

BIOL 5844. Community Ecology. 4 Hours.
Survey of theoretical and applied aspects of community processes stressing structure, trophic dynamics, community interactions, and major community types. Corequisite: Lab component. Prerequisite: BIOL 3863. (Typically offered: Fall Odd Years)

BIOL 5863. Analysis of Animal Populations. 3 Hours.
(Formerly BIOL 4863.) Basic principles of design and analysis for population studies of fish and wildlife species. Students will be instructed in the use of the latest software for estimating population parameters. Focus will be on both concepts and applications. Management applications of estimated parameters will be emphasized. Lecture 2 hours, laboratory 3 hours per week. Graduate degree credit will not be given for both BIOL 4863 and BIOL 5863. Corequisite: Lab component. Prerequisite: BIOL 3863. (Typically offered: Spring Even Years)

BIOL 5873. Microbial Molecular Genetics and Informatics. 3 Hours.
Fundamentals of microbial genomics and bioinformatics. Course covers microbial genetics, genetic structure, genome organization, proteome organization, approaches for the analysis of DNA, RNA, and proteins, cellular metabolic pathways, genetic regulation, small RNA molecules, functional genomics, metagenomics, and bioinformatics approaches for analysis of microbial genomes. Prerequisite: Graduate status. (Typically offered: Fall)

BIOL 5883. Mammalian Evolution and Osteology. 3 Hours.
Focuses on describing the evolutionary history of mammals, a group of vertebrates that include over 5,000 species in 29 orders, and will provide an overview of living species and their identifying features. Credit will not be given for both ANTH 4703 and ANTH 5703. Prerequisite: Instructor consent. (Typically offered: Fall Even Years)

BIOL 5893. Global Biogeochemistry: Elemental Cycles and Environmental Change. 3 Hours.
This course explores the chemical, biological, and geological processes occurring within ecosystems. An understanding of these processes is used to investigate how they form the global biogeochemical cycles that provide energy and nutrients necessary for life. Class discussions focus on global change and the effects of more recent anthropogenic influences. Prerequisite: 3 hours of chemistry or biochemistry and ecology. (Typically offered: Spring Odd Years)

BIOL 5906V. Culture and Environment: Field Studies. 1-6 Hour.
(Formerly BIOL 4906V) May be taken by students participating in overseas study programs or other domestic field study programs approved by the department. Graduate degree credit will not be given for both BIOL 4906V and BIOL 5906V. (Typically offered: Irregular) May be repeated for up to 12 hours of degree credit.

BIOL 600V. Master’s Thesis. 1-6 Hour.
Master’s Thesis. Prerequisite: Graduate standing. (Typically offered: Fall, Spring and Summer) May be repeated for degree credit.

BIOL 6113. Insect Physiology. 3 Hours.
General and comparative physiology of insects. Previous knowledge of basic entomology is helpful, but not required. Lecture 2 hours, laboratory 3 hours per week. Corequisite: Lab component. (Typically offered: Spring Even Years)

This course is cross-listed with ENTO 6113.
BIOL 700V. Doctoral Dissertation. 1-18 Hour.
Doctoral Dissertation. Prerequisite: Graduate standing. (Typically offered: Fall, Spring and Summer) May be repeated for degree credit.