Biomedical Engineering (BMEG)

Courses

BMEG 5103. Design and Analysis of Experiments in Biomedical Research (Irregular). 3 Hours.
An advanced course covering sample size estimation with power calculations, protection of vertebrate animals and human subjects, factorial design, multivariate analysis of variance, parametric and non-parametric data analysis, Kaplan-meier analysis, and post-test correction of multiple comparisons as related to biomedical data. Prerequisite: MATH 2584 and BMEG 3653 or equivalents.

Application of numerical methods and mathematical techniques to physiological systems. Cellular physiology topics include models of cellular metabolism, diffusion, membrane potential, excitability, calcium dynamics and intercellular signaling. Cardiovascular system topics include models of blood cells, oxygen transport, cardiac output, cardiac regulation, and circulation. Other physiology topics include respiration, muscle, vision, hearing, voice, and speech. Prerequisite: MATH 2584 or BMEG 3653 or BMEG 4623 or equivalents.

BMEG 5213. Tissue Mechanics (Irregular). 3 Hours.
The purpose of this course is to introduce students to non-linear biomechanics of soft tissues such as skin, bladder, blood vessels, and the brain. Topics covered: Tissue mechanics: continuum biomechanics, tensor analysis, kinematics of continua, balance laws. Governing physics of mechanics as applied to soft tissues. Various constitutive relations will be discussed: linear elastic, hyperelastic, viscoelastic, poroelastic, and inelastic materials with internal variables. Cannot receive credit for both BMEG 4213 and BMEG 5213. Prerequisite: BMEG 2813 and BMEG 4623 or equivalents.

BMEG 5313. Advanced Biomaterials and Biocompatibility (Irregular). 3 Hours.
From Absorbable sutures to Zirconium alloy hip implants, biomaterials science influences nearly every aspect of medicine. This course focuses on the study of different classes of biomaterials and their interactions with human tissues. Prerequisite: BMEG 3634 and BMEG 4623 or equivalents.

BMEG 5413. Tissue Engineering (Irregular). 3 Hours.
This course introduces Tissue Engineering approaches at genetic and molecular, cellular, tissue, and organ levels. Topics include cell and tissue in-vitro expansion, tissue organization, signaling molecules, stem cell and stem cell differentiation, organ regeneration, biomaterial and matrix for tissue engineering, bioreactor design for cell and tissue culture, dynamic and transportation in cell and tissue cultures, clinical implementation of tissue engineered products, and tissue engineered devices. Students may not earn credit for both BMEG 5413 and BMEG 4413. Corequisite: Lab component. Prerequisite: BIOL 2533 and BMEG 3824.

BMEG 5423. Regenerative Medicine (Irregular). 3 Hours.
The course covers five broad areas: Biological and molecular basis for regenerative medicine, tissue development, regenerative medicine and innovative technologies, clinical applications of regenerative medicine, and regulation and ethics. Prerequisite: BIOL 2533 and BMEG 3824 or equivalents.

BMEG 5504. Biomedical Microscopy (Irregular). 4 Hours.
An advanced course covering light microscopy techniques, conjugate image planes, principles of contrast, fluorescence imaging, confocal and multiphoton microscopy, electron microscopy, atomic force microscopy, image reconstruction and digital image processing with supporting units in tissue culture and histology. Prerequisite: PHYS 2074 or equivalent.

BMEG 5513. Biomedical Optics and Imaging (Irregular). 3 Hours.
This course will provide students with a fundamental understanding of various biomedical imaging modalities. Topics will include: Basics of light-tissue interaction - absorption, fluorescence, elastic and inelastic scattering; Computational and analytical models of light propagation to quantify tissue optical properties; Optical imaging techniques - spectroscopy, tomography, and laser speckle with potential clinical applications; and Clinical imaging modalities and recent advances - X-ray, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Computed Tomography (CT), Ultrasound imaging, and Photoacoustic imaging. At the end of this course, students should have a good understanding of optical imaging, spectroscopy, and non-optical imaging modalities, specific anatomical sites that they are best suited for, and the trade-offs between imaging depth and resolution. Students may not receive credit for both BMEG 4513 and BMEG 5513.

BMEG 5523. Biomedical Data and Image Analysis (Irregular). 3 Hours.
This course focuses on an introduction to image processing and analysis for applications in biomedical research. After a review of basic MATLAB usage, students will learn fundamental tools for processing and analyzing data from a variety of subdisciplines within biomedical engineering. Topics include: filtering, thresholding, segmentation, morphological processing, and image registration. Through exercises involving 1D, 2D, and 3D data, students will develop problem-solving skills and a knowledge base in MATLAB required for customized quantitative data analysis. Students may not receive credit for both BMEG 4523 and BMEG 5523. Prerequisite: Graduate standing.

BMEG 560V. Advanced Individual Study (Irregular). 1-6 Hour.
Individual study and research of a topic mutually agreeable to the student and faculty member. Prerequisite: Graduate standing.

BMEG 570V. Advanced Special Topics (Irregular). 1-6 Hour.
Consideration of current biomedical engineering topics not covered in other courses. Prerequisite: Graduate standing. May be repeated for up to 15 hours of degree credit.

BMEG 5713. Cardiovascular Physiology and Devices (Irregular). 3 Hours.
Understanding etymology of disease while creating solutions and dedicated devices is the primary focus of biomedical engineering. This course describes an interdisciplinary approach of the clinical and engineering worlds to develop devices for treating cardiovascular disease. The first part of the course will be a thorough review of the relevant anatomic and physiological considerations important for developing devices. Understanding these considerations from an engineering perspective to inform device development will be the second part of the course. Students may not receive credit for both BMEG 4713 and BMEG 5713. Prerequisite: Graduate standing.

BMEG 5800. Graduate Seminar I (Fa). 0 Hours.
A weekly seminar series comprised of presentations by invited speakers and graduate students as well as didactic instruction in relevant topics including research ethics, authorship, biosafety and the use of animals in biomedical research. Prerequisite: BMEG 5801. May be repeated for up to 8 hours of degree credit.

BMEG 5801. Graduate Seminar I (Fa). 1 Hour.
A weekly seminar series comprised of presentations by invited speakers and graduate students as well as didactic instruction in relevant topics including research ethics, authorship, biosafety and the use of animals in biomedical research.

BMEG 5810. Graduate Seminar II (Sp). 0 Hours.
A weekly seminar series comprised of presentations by invited speakers and graduate students as well as didactic instruction in relevant topics including professional development, career options, effective communication, technology transfer, clinical translation and intellectual property. Prerequisite: BMEG 5811. May be repeated for up to 8 hours of degree credit.
BMEG 5811. Graduate Seminar II (Sp). 1 Hour.
A weekly seminar series comprised of presentations by invited speakers and graduate students as well as didactic instruction in relevant topics including professional development, career options, effective communication, technology transfer, clinical translation and intellectual property.

BMEG 5953. Fundamentals of Fracture and Fatigue in Structures (Sp, Fa). 3 Hours.
The course will cover the concepts of linear-elastic, elastic-plastic and time-dependent Fracture Mechanics as applied to fracture in a variety of materials, structures, and operating conditions. The examples will include fracture in large components such as aircraft, bridges and pressure vessels and also in bones and in soft materials and human tissue. Prerequisite: Graduate standing in Civil, Mechanical or Biomedical Engineering or consent of the instructor. This course is cross-listed with MEEG 5953, CVEG 5953.

BMEG 600V. Master's Thesis (Irregular). 1-6 Hour.
Master's Thesis. Prerequisite: Graduate standing. May be repeated for degree credit.

BMEG 700V. Doctoral Dissertation (Irregular). 1-6 Hour.
Doctoral Dissertation. Prerequisite: Graduate standing. May be repeated for degree credit.