Biological Engineering (BENG)

Courses

BENG 4123. Biosensors & Bioinstrumentation (Odd years, Sp). 3 Hours. Principles of biologically based sensing elements and interfacing techniques. Design and analysis methods of biosensing and transducing components in bioinstrumentation. Applications of biosensors and bioinstrumentation in bioprocessing, bioenvironmental, biomechanical and biomedical engineering. Lecture 2 hours, laboratory 3 hours per week. Corequisite: Lab component. Prerequisite: BIOL 2013 or BIOL 2533 and BENG 3113.

BENG 452V. Special Topics in Biological Engineering (Irregular). 1-6 Hour. Special topics in biological engineering not covered in other courses. Prerequisite: Engineering student. May be repeated for up to 8 hours of degree credit.

BENG 500V. Advanced Topics in Biological Engineering (Irregular). 1-6 Hour. Special problems in fundamental and applied research. Prerequisite: Graduate standing. May be repeated for up to 6 hours of degree credit.

BENG 5103. Advanced Instrumentation in Biological Engineering (Even years, Sp). 3 Hours. Applications of advanced instrumentation in biological systems. Emphasis on updated sensing and transducing technologies, data acquisition and analytical instruments. Lecture 2 hours, lab 3 hours per week. Corequisite: Lab component. Prerequisite: BENG 3113.

BENG 5253. Bio-Mems (Irregular). 3 Hours. Topics include the fundamental principles of microfluidics, Navier-Stokes Equation, bio/abio interfacing technology, bio/abio hybrid integration of microfabrication technology, and various biomedical and biological problems that can be addressed with microfabrication technology and the engineering challenges associated with it. Lecture 3 hour per week. Prerequisite: MEEG 3503 or CVEG 3213 or CHEG 2133. This course is cross-listed with MEEG 5253.

BENG 5303. Fundamentals of Biomass Conversion (Fa). 3 Hours. Web-based overview of the technology involved in the conversion of biomass to energy, including associated sustainability issues. Overview of biomass structure and chemical composition; biochemical and thermochemical conversion platforms; issues, such as energy crop production related to water consumption and soil conservation. Further topics include: biomass chemistry, logistics and resources; biological processes; and thermochemical processes. Two web-based lectures/meetings per week. Prerequisite: Graduate standing or instructor consent.

BENG 5313. Fundamentals of Bioprocessing (Sp). 3 Hours. This course covers the fundamentals of mass and energy balances, fluid dynamics, heat and mass transfer, and Bioprocessing. The microbial growth, kinetics and fermenter operation as applicable to Bioprocessing will be covered in this course. Industrial Bioprocessing case studies that involve the integration of the course contents will be discussed. This course is offered on-line in collaboration with the AG*IDEA consortium of land grant universities. The principal instructor will be a non-UA faculty member at a participating university. Prerequisite: MATH 2554, CHEM 3813, and PHYS 2054.

BENG 5323. Bio separations (Even years, Sp). 3 Hours. Study of separations important in food and biochemical engineering such as leaching, extraction, expression, absorption, ion exchange, filtration, centrifugation, membrane separation, and chromatographic separations. This course is offered on-line in collaboration with the AG*IDEA consortium of land grant universities. The principal instructor will be a non-UA faculty member at a participating university. Prerequisite: Instructor Consent.

BENG 5333. Biochemical Engineering (Odd years, Sp). 3 Hours. The analysis and design of biochemical processing systems with emphasis on fermentation kinetics, continuous fermentations, aeration, agitation, scale up, sterilization, and control. This course is offered on-line in collaboration with the AG*IDEA consortium of land grant universities. The principal instructor will be a non-UA faculty member at a participating university. Prerequisite: Instructor Consent Required.

BENG 5343. Advanced Biomass Thermochemical Conversion (Odd years, F). 3 Hours. Advanced study, evaluation, and application of thermochemical conversion pathways in biofuel production. Specific topics include biomass gasification, pyrolysis, liquefaction, and heterogeneous catalysts. This course is offered on-line in collaboration with the AG*IDEA consortium of land grant universities. The principal instructor will be a non-UA faculty member at a participating university. Prerequisite: Instructor Consent.

BENG 5351. Sustainability Seminar (Su). 1 Hour. Topics in environmental sustainability, green engineering, life cycle analysis, sustainable development and sustainability science. This course is offered on-line in collaboration with the AG*IDEA consortium of land grant universities. The principal instructor will be a non-UA faculty member at a participating university. Prerequisite: CHEM 1123.

BENG 5613. Simulation Modeling of Biological Systems (Irregular). 3 Hours. Application of computer modeling and simulation of discrete-event and continuous-time systems to solve biological and agricultural engineering problems. Philosophy and ethics of representing complex processes in simplified form. Deterministic and stochastic modeling of complex systems, algorithm development, application limits, and simulation interpretation. Emphasis on calibration, validation and testing of biological systems models for the purposes of system optimization, resource allocation, real-time control and/or conceptual understanding. Prerequisite: (AGST 4023 or AGST 5023 (formerly AGST 4023) or STAT 4003 or INEG 2313.

BENG 5623. Life Cycle Assessment (Sp). 3 Hours. This course will examine the process and methodologies associated with life cycle analysis (LCA). The course will explore the quantitatively rigorous methodology for life cycle inventory (LCI), LCA and life cycle impact assessment (LCIA). This course is offered on-line. The principal instructor will be a UA faculty member.

BENG 5633. Linkages Among Technology, Economics and Societal Values (Sp, Fa). 3 Hours. Addresses how macro-level change is influenced by the linkages among technology, economics and societal values. Three major course initiatives: 1) Developing a conceptual model for understanding how macro-level change has occurred over history; 2) Examining recorded history in order to develop a contextual appreciation for society’s current situation; and 3) Using statistical data to identify six overriding world trends that are likely to greatly impact society’s goal of achieving sustainable prosperity and well-being in the foreseeable future. Prerequisite: Graduate standing or instructor permission. This course is cross-listed with OMTG 5633.

BENG 5733. Advanced Biotechnology Engineering (Odd years, Fa). 3 Hours.
Applications of the principles of bioprocess/biochemical engineering to microbiological and biomedical problems. Topics include applied enzymology, metabolic engineering, molecular genetics and control, and bioinformatics and nanobiotechnology in addition to classical applied enzyme and cell-growth kinetics and advanced bioreactor design. Prerequisite: BENG 3733 or BENG 4703 or BENG 5743 or equivalent.

BENG 5743. Biotechnology Engineering (Fa). 3 Hours.
Introduction to biotechnology topics ranging from principles of microbial growth, mass balances, bioprocess engineering as well as emerging principles in the design of biologically based microbial and enzymatic production systems. Application areas such as biofuels, and fine and bulk chemical production. Lecture 2 hours, laboratory 3 hours per week. Students may not earn credit for both BENG 5743 and BENG 4703. Prerequisite: Graduate standing. Corequisite: Lab component.

BENG 5801. Graduate Seminar (Sp). 1 Hour.
Reports presented by graduate students on topics dealing with current research in biological engineering. Prerequisite: Graduate standing.

BENG 5923. Nonpoint Source Pollution Control and Modeling (Irregular). 3 Hours.
Control of hydrologic, meteorologic, and land use factors on nonpoint source (NPS) pollution in urban and agricultural watersheds. Discussion of water quality models to develop NPS pollution control plans and total maximum daily loads (TMDLs), with consideration of model calibration, validation, and uncertainty analysis. Prerequisite: CVEG 3223.

BENG 5933. Environmental and Ecological Risk Assessment (Sp). 3 Hours.

BENG 5953. Ecological Engineering Design (Fa). 3 Hours.
Design of low impact development techniques to enhance ecological services, reduce peak runoff, and capture sediments, nutrients and other pollutants resulting from urban development. Techniques may include: bio-swales, retention basins, filter strips. Design of sustainable ecological processes for the treatment and utilization of wastes/residues. Techniques may include: direct land application to soils/crops, composting systems, lagoons and constructed wetlands. Design goals include optimization of ecological services to maintain designated uses of land, water and air; including enhancement of habitat for wildlife and recreation, and the discovery of economically viable methods for co-existence of urban and agricultural land uses. Lecture 3 hours per week. Students may not earn credit for both BENG 5953 and BENG 4923.

BENG 600V. Master’s Thesis (Sp, Su, Fa). 1-6 Hour.
Graduate standing required for enrollment. May be repeated for degree credit.

BENG 700V. Doctoral Dissertation (Sp, Su, Fa). 1-18 Hour.
Candidacy is required for enrollment. May be repeated for degree credit.